Management in the emergency room of patients requiring hospital treatment of community-acquired pneumonia

Introduction. To identify factors influencing decisions in initial management of community-acquired pneumonia (CAP) admitted to hospital through Emergency departments.

Methods. Records of CAP adult patients admitted to 24 Spanish hospitals in January-Mars 2003 were reviewed. Patients sent for ambulatory treatment were excluded.

Results. 341 patients (67.0 ± 24.6 years; 65.3 % males) were included; 39 % were taking antibiotics at attendance. PSI was (% patients): I-II (19.7 %), III (14.7 %), and IV-V (65.6 %). Comorbidities were: COPD (37.2 %), heart disease (24.6 %), hypertension (17 %), diabetes mellitus (10.8 %), and malignancies (10 %). Pneumococcal/Legionella urinary antigens were performed in 34.0 %/42.2 % patients. Fewer (p ≤ 0.006) rapid tests were performed in class IV-V (p = 0.001), with higher (p ≤ 0.01) pneumococcal positive results in class V. Initial treatment was fluoroquinolone (37.5 %), beta-lactam + macrolide (26.4 %), beta-lactam (22.9 %), macrolide (4.7 %), and others (8.5 %). Patients referred to Internal Medicine had higher heart disease (p = 0.06) and hypertension (p = 0.001) as comorbidity than those at Short-Stay Units or Pneumology. COPD patients were equally distributed between Internal Medicine and Pneumology, with differences vs. Short-Stay Units.

Conclusions. Rapid diagnostic tests were underused, maybe due to broad empirical treatments covering drug-resistant pneumococci and L. pneumophila (regardless PSI and comorbidity). Presence of comorbidities or positive results in rapid diagnostic tests seems to influence the medical ward to which the patient is referred to, but not initial treatment.

Rev Esp Quimioter 2009;22(1):4-9
INTRODUCTION

Community-acquired pneumonia (CAP) is a frequent cause of medical consultation both in primary health care and hospital’s Emergency departments. The interest in its management is based on its high incidence, high morbidity and mortality, cost of care and empiric foundation of its aetiological treatment.

CAP is the sixth leading cause of death and the leading cause of death due to infection. Attributable mortality to CAP is less than 1% in out-hospital treated patients and ranges from 2% to 30% in hospitalised patients. Host-related factors as age, comorbidity of the patient, severity of the infection, bacteremia, and probability of development of septic shock greatly contribute to the risk of mortality. In Spain CAP incidence is around 1.6/1,000 inhabitants/year, and incidence of CAP hospitalised patients is around 160 cases/100,000 inhabitants, a figure that increases to 523 cases/100,000 inhabitants in the elderly (> 65 years) population.

Pneumonia is one of the most common conditions for which patients seek emergency care, being nearly 75% CAP patients initially evaluated and treated in hospital-based Emergency departments, and a high number of CAP patients require hospitalisation.

In the Emergency department, primary goals of management of CAP are to provide cost-effective care, to determine patients to be treated as outpatients, those that should remain in short-stay observation at the Emergency room, and patients candidates to hospital treatment selecting the adequate medical ward.

In this study we analyse factors influencing the physician’s initial management and decisions (rapid diagnostic tests required, empirical treatment and selection of medical ward for admission) in the Emergency room of patients requiring hospital treatment for community-acquired pneumonia in 24 Spanish hospitals in a three-month winter period.

MATERIAL AND METHODS

Study setting and population

All clinical records of patients with ≥14 years of age and CAP diagnosis hospitalised through Emergency departments in a three-month period (January-March 2003) in 24 Spanish hospitals were retrospectively reviewed. Patients sent for treatment on an ambulatory basis were excluded from the study.

Hospitals were selected considering number of inhabitants in Spain (Instituto Nacional de Estadística www.ine.es): Four centres in the north region (Galicia, Asturias, Cantabria, País Vasco, Navarra, and La Rioja autonomous communities) with approx. 7.4 x 10^6 inhabitants, 5 centres in the central region (Castilla-León, Aragón, Madrid, Castilla-La Mancha, and Extremadura autonomous communities) with approx. 10.5 x 10^6 inhabitants, 6 centres in the south region (Andalucía and Canarias autonomous communities) with approx. 9.7 x 10^6 inhabitants, and 9 centres in the Mediterranean area (Cataluña, Comunidad Valenciana, Baleares, and Murcia autonomous communities) with approx. 13.4 x 10^6 inhabitants.

Study design

Medical records were reviewed to obtain demographic, clinical and analytical data necessary to classify patients according to the Pneumonia Severity Index (PSI) category. Data recorded consisted in: a) demographic data: age, gender, nursing home residence, previous antibiotic treatment and who take the decision (patient’s or primary care physician’s decision) to refer the patient to the Emergency room; b) comorbidities: malignancies, liver, renal, heart or vascular disease, HIV, chronic obstructive pulmonary disease (COPD); c) clinical, radiological and analytical data for CAP diagnosis and calculation of PSI score: fever, cough, sputum characteristics, pleuritic chest pain, auscultatory findings, dyspnoea or tachypnoea, total peripheral white blood cell count, PO2 or oxygen saturation by pulse oximetry, chest radiograph; d) microbiological tests performed; e) initial antibiotic treatment, and f) outcome.

Statistical analysis

Comparisons of percentages were analysed by the Chi-square test. A p < 0.05 was considered significant.

RESULTS

Clinical records of 341 CAP patients attended at Emergency departments and requiring hospitalisation were reviewed. Mean age was 67.0 ± 24.6 years (range 15-94 years). Significantly (p < 0.0001) higher number of patients was male: 65.3% vs. 34.7% females. The proportion of patients that attended the Emergency room by their own decision (53.5%) was not different (p = 0.07) to the proportion referred by a primary care physician (46.5%). Twenty-nine percent of patients were taking antibiotic treatment at attendance, with similar percentages among those referred by physicians and those attending the Emergency room by their own (30.5% vs. 27.6%; p = 0.57).

According to the PSI score, patients were distributed as follows: 67 (19.7%) in class I-II, 50 (14.7%) in class III, 119 (34.9%) in class IV, and 105 (30.8%) in class V. COPD was the most frequent comorbidity (37.2% patients), followed by heart disease (24.6%), hypertension (17%), diabetes mellitus (10.8%), malignancies (10%), cerebrovascular dis-
ease (7.6%), renal disease (4.4%), liver disease (4.1%) and HIV (3.2%).

Blood cultures were performed in 50.1% patients. Significant higher number of blood cultures were taken in class IV (p = 0.04) or class V (p = 0.02) patients than in low-risk classes I-III patients (56.2% or 53.8% vs. 41%, respectively). Sputum culture was performed in 35.8% patients (without differences between PSI classes), urinary pneumococcal antigen in 34.0%, and urinary Legionella antigen in 42.2%. Table 1 shows rapid aetiological diagnostic tests (urinary antigens) and results according to PSI classes. Significant lower number of pneumococcal urinary antigen tests was performed in class V (p = 0.006) or class IV (p = 0.001) patients versus those in low-risk classes (I-III). This significant difference was also observed in relation to Legionella urinary antigen tests between class V (p = 0.002) or class IV (p = 0.003) and low-risk classes (I-III). Among rapid tests performed, 25% showed positive result for pneumococcal antigen and 6.3% for Legionella antigen. Of the pneumococcal urinary antigen tests performed, significant higher number of positive results corresponded to patients in class V (42.8%) versus class IV (21.2%) (p = 0.008) or classes I-II-III (20.9%) (p = 0.007). Of the Legionella urinary antigen tests performed, higher number of positive results corresponded to patients in class IV and V, although differences between risk classes did not reach statistical significance (p = 0.2).

Table 2 shows severity and comorbidity, together with percentage of patients with positive antigen results (among the subpopulation where the tests were performed), in relation to the medical wards where the patients were hospitalised. Comparing with patients remaining for observation at Short-Stay Units, patients hospitalised in Internal Medicine exhibited higher COPD (p = 0.04), heart disease (p = 0.006) and hypertension (p = 0.001) as comorbidity, and patients hospitalised at Pneumology departments higher COPD (p = 0.06). Heart disease (p = 0.03) and hypertension (p = 0.01) were higher in patients that were hospitalised in Internal Medicine than in those in Pneumology. Among those patients with urinary antigen tests performed, significant (p = 0.003) higher number of patients with positive pneumococcal antigen was hospitalised in Pneumology (17 out of 29, 58.6%) versus those in Internal Medicine (6 out of 29, 20.7%). Four out of 6 patients hospitalised in the ICU had positive result in the urinary Legionella antigen test (that was performed in 5 patients). Eleven patients died (mortality rate 3.2%), all of them, were class IV or V.

DISCUSSION

Patients with CAP are usually in the mid-fifties to late sixties, as in the present series, with peak incidences of the disease in mid winter and early spring. A high number of CAP patients require hospitalisation in our environment, although the number of patients admitted with CAP varies greatly between hospitals. PSI score has been used to classify patients as outpatients (classes I and II), patients that may benefit from brief inpatient treatment (class III),

<table>
<thead>
<tr>
<th>PSI</th>
<th>No. patients</th>
<th>No. patients with test performed (%)</th>
<th>No. (%) positive results among tests performed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pneumococcal Ag</td>
<td>Legionella Ag</td>
</tr>
<tr>
<td>I - II - III</td>
<td>117</td>
<td>43 (36.7)</td>
<td>57 (48.7)</td>
</tr>
<tr>
<td>IV</td>
<td>119</td>
<td>52 (43.7)</td>
<td>57 (47.9)</td>
</tr>
<tr>
<td>V</td>
<td>105</td>
<td>21* (20)</td>
<td>30* (28.6)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>341</td>
<td>116 (34)</td>
<td>144 (42.2)</td>
</tr>
</tbody>
</table>

* p < 0.01 versus class IV or class I-II-III
and patients who require hospital treatment (classes IV and V). But the PSI score has limitations since it was identified as predictor of mortality, and not set to determine the setting of care: it does not contain the ability to integrate clinical judgement, remaining doubts on which is the optimal management of patients included in class III. In this sense, the IDSA guidelines establish the safety of home treatment based in a three step process: a) assessment of pre-existing conditions that compromise the home treatment safety, b) class I, II and III of the PSI score and c) clinical judgement.

In this series, we describe characteristics of decisions taken in the Emergency room in the management of CAP patients requiring hospital treatment in winter and early spring (January-March) in 24 hospitals distributed all over the Spanish geography.

The number of patients belonging to class I and II (19.7%) and those belonging to class III (14.7%) that were admitted to hospital in our series was comparable to previous series in our country (16.6% and 17.4% respectively). Percentage of high-risk patients (classes IV and V) was similar among patients that remained in Short-Stay Units (64.6%) than among those hospitalised in Pneumology (65%) or Internal Medicine (68.5%).

Surprisingly, and in relation to PSI score, rapid tests as urinary antigen detection for S. pneumoniae or Legionella pneumophila were required in a lower number in patients classified as class V in comparison with low-risk patients. On the contrary, not surprisingly, higher rate of positive results (among the patient population where rapid tests were performed) was found in class V versus the other PSI classes.

With respect to antibiotic treatment, it should be highlighted that around 30% patients arrived to the Emergency room with previous antibiotic intake for the present condition, half of these treatments were prescribed by primary care physicians but the other half was due to self-medication, a common fact in our country. At Emergency rooms, it seems that the request of rapid tests, as well as the PSI score did not influence initial hospital antibiotic treatment. Around 75% patients included in this series were empirically treated with antimicrobial regimens or combinations covering Legionella pneumophila (regimens that included fluoroquinolones, macrolides or azalides), and > 90% patients received regimens covering penicillin/macrolide-resistant pneumococci. This empirical coverage is related to the fact that in our country 1% to 5% CAP (in a non epidemic environment) is caused by Legionella pneumophila, with higher percentages in some series. Legionella pneumophila epidemics are frequent, and one-third of Legionella cases are seen in patients that do not present classical risk factors (smoking, COPD, and > 65 years), thus stressing the need of Legionella coverage regardless the presence or not of risk factors. From the perspective of rapid diagnosis, not all CAP patients infected by Legionella can be diagnosed by the rapid test because its sensitivity is 70% and the antigen is generally detectable 3 days after the onset of symptoms. Risk factors for drug-resistant S. pneumoniae are similar to those for Legionella (> 65 years, previous antibiotic use due to COPD exacerbations, multiple medical comorbidities...), but although Spain is a country with high prevalence of S. pneumoniae penicillin/macrolide resistance, pneumococci exhibits high susceptibility rates to parenteral third generation cephalosporins, amoxicillin or fluoroquinolones.

The difficulty in differentiating typical and atypical infection, and the possibility of co-infection, drives to the recommendation in all guidelines to typical and atypical coverage in empirical treatment. This is more important in severe patients requiring hospital management where early (avoiding delays due to diagnostic testing) empirical treatment providing broad coverage is essential to

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Severity, comorbidity and rapid diagnosis distributed by the medical ward where the patients were hospitalised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical wards</td>
<td>PSI % Classes IV-V</td>
</tr>
<tr>
<td>Internal Med</td>
<td>124</td>
</tr>
<tr>
<td>Pneumo.</td>
<td>103</td>
</tr>
<tr>
<td>Short-stay</td>
<td>82</td>
</tr>
<tr>
<td>Other hospital</td>
<td>19</td>
</tr>
<tr>
<td>Infect Dis</td>
<td>7</td>
</tr>
<tr>
<td>ICU</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>341</td>
</tr>
</tbody>
</table>
ensure good outcome since delay is associated with increased mortality. In this sense, this broad coverage was preferably obtained in this series with fluoroquinolones than with 3rd generation cephalosporin plus macrolide or the combination of beta-lactam/beta-lactamase inhibitor plus macrolide (approx. 38% vs. 19% vs. 7%, respectively).

While PSI score seems not to influence the medical ward of inhospital CAP treatment (except for patients admitted in the ICU), the result of the rapid test among patients in which it was performed, seems to influence it together with the comorbidity present in the patient. Significantly higher number of patients with positive pneumococcal antigen test (among those where the test was performed) was treated in Pneumology departments, and four out of the 6 patients admitted in the ICU (the test was performed in 5 of them) presented positive result of the urinary Legionella antigen. From the clinical point of view patients referred to Internal Medicine had significantly higher heart disease and hypertension as comorbidity than those that remained in Short-Stay Units or those referred to Pneumology. Patients with COPD (the most frequent comorbidity in this series) were equally distributed between Internal Medicine and Pneumology, with differences vs. those remaining in Short-Stay Units. The role of Infectious Diseases departments cannot be evaluated in this study since most participating hospitals do not have this medical ward for hospitalisation but only for consultancy.

This study explores the decisions taken in the Emergency room in a retrospective way by reviewing clinical records from CAP patients treated in the hospital. However we consider that is the only way to know the actual situation since a prospective study would influence the decisions taken by physicians. It is only a descriptive study and not an interventional study. On the other side it has been studied only the relationship between the patient's factors (PSI, comorbidity) and physician's decisions (aetiologic diagnostic tests, treatment chosen and medical ward for hospitalisation). Other factors not related with those considered may have influence at single hospital level (bed disposition at the different wards, attendance pressure in Emergency rooms...).

The results of this study examining management in daily practice of CAP patients requiring hospital treatment show that rapid diagnostic tests are used, maybe related to the high use of broad empirical treatments covering both penicillin/macrolide resistant pneumococci and L. pneumophila regardless PSI score or comorbidity. Presence of comorbidities or positive results in the rapid diagnostic tests seems to influence the medical ward to which the patient is referred to.

ACKNOWLEDGEMENTS

This study was supported by an unrestricted grant from Pfizer S.A., Madrid, Spain.

Part of this study was presented at the 17th ECCMID/25th ICC, March 31-April 3, 2007, Munich, Germany.

Members of the CAPEM (Community-Acquired Pneumonia Emergency Management) are: H Clínico Universitario Lozano Blesa, Zaragoza; H Basurto, Bilbao; H Virgen de la Arrixaca, Murcia (T Hernandez); H do Meioeiro, Vigo (L Amador); H Juan Ramón Jiménez, Huelva (E. Pino); H. Virgen del Rocío, Sevilla (S Boto, E Garcia-Díaz); H Juan Canalejo, A Coruña (A Fernández-García); H Peset, Valencia (C Meliá); H de la Ribera, Alzira (B Ruiz-Zaragoza); H Puerta de Hierro, Madrid (C Mascias); H General de Alicante, Alicante (P Llorens); H Virgen Macarena, Sevilla (JL Gálvez); H Carlos Haya, Málaga; H Clinic i Provincial, Barcelona (M Sánchez); H Universitario San Cecilio, Granada (J Cantero); H Parc Tauli, Sabadell; H Sta. María del Rosell, Cartagena (R Cardós); H de Jerez, Jerez de la Frontera (A Lobato); H General Río Ortega, Valladolid; H General de Cataluña (J Ibáñez-Nolla), S. Cubat del Vallés (J Ibáñez-Nolla); H San Jorge, Huesca (J Recreo, JL Domínguez Gavas); H Central de Asturias, Oviedo (S Suárez-Peña; E Pereiro); H General Yagüe, Burgos (J Arroyo); H Universitario Arnau de Vilanova, Lleida (A Ruiz-González).

REFERENCES

D. Martínez, et al.

Management in the emergency room of patients requiring hospital treatment of community-acquired pneumonia

