Review

Natalia Gómez Casanova¹ María Siller Ruiz¹ Juan Luis Muñoz Bellido^{1,2,3}

Mechanisms of resistance to daptomycin in *Staphylococcus aureus*

¹Research Group on Clinical Microbiology and Parasitology and Antimicrobial Resistance (IIMD-16). Instituto de Investigación Biomédica de Salamanca (IBSAL). Universidad de Salamanca, CSIC, Complejo Asistencial Universitario de Salamanca. Salamanca, Spain.

²Servicio de Microbiología y Parasitología. Complejo Asistencial Universitario de Salamanca. Salamanca, Spain.
³Departamento de Ciencias Biomédicas y del Diagnóstico. Universidad de Salamanca. Salamanca, Spain.

ABSTRACT

Daptomycin is a cyclic lipopeptide active against multidrug-resistant Gram-positives, including methicillinresistant Staphylococcus aureus (MRSA) and S. aureus with reduced susceptibility to vancomycin. It is 4-8 fold as active as vancomycin against methicillin-susceptible S. aureus (MSSA) and MRSA, and retains most of this activity against S. aureus with reduced susceptibility to vancomycin. The mechanism of action of daptomycin is not fully understood. Daptomycin binds to the bacterial cytoplasmic membrane, leading to depolarization due to the loss of potassium ions from the cytoplasm. Daptomycin non-susceptibility is unusual in the clinical setting. Different mechanisms have been proposed to explain daptomycin-resistance, most of them associated to changes in composition, charge and fluidity of the cell wall. The mprF mutations, which lead to an increase in the lysyl-phosphatidyl glycerol production, and rpoB and rpoC mutations (rpo genes encode for bacterial RNA polymerase subunits) have been proposed as associated to daptomycinresistance, but a number of mutations in other genes (walk, cls, ggrA...) have been proposed.

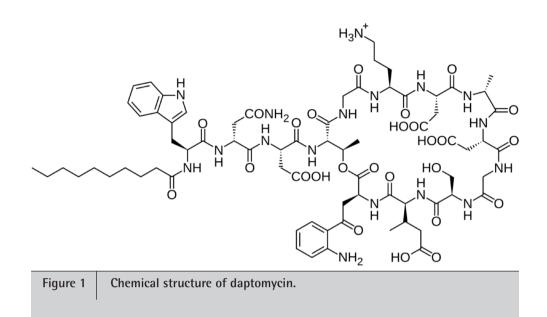
Keywords: Daptomycin, resistance mechanisms.

Mecanismos de resistencia a daptomicina en *Staphylococcus aureus*

RESUMEN

Daptomicina es un lipopéptido cíclico, activo frente a microorganismos grampositivos multirresistentes, incluyendo

Correspondence: Juan Luis Muñoz Bellido. Servicio de Microbiología. Complejo Asistencial Universitario de Salamanca. Pº de San Vicente 58-182. 37007 Salamanca. Spain Phone: +34 923 291100 (Ext. 55990). E-mail: jlmubel@usal.es.


Staphylococcus aureus resistente a meticilina (SARM) y S. qureus con sensibilidad reducida a vancomicina. Es 4-8 veces más activa que vancomicina frente a S. aureus sensible a meticilina (SASM) y SARM, y mantiene prácticamente la misma actividad frente a S. aureus con sensibilidad reducida a vancomicina. El mecanismo de acción de daptomicina no está completamente explicado. Daptomicina se une a la membrana citoplasmática bacteriana y da lugar a su despolarización, como consecuencia de la pérdida de iones potasio. La resistencia a daptomicina es todavía infrecuente en el ámbito clínico. Se han propuesto diversos mecanismos de resistencia, en su mayor parte asociados a cambios en la composición, carga y fluidez de la membrana celular. Se ha propuesto la asociación de la resistencia a daptomicina con mutaciones en los genes mprF, que dan lugar a un aumento en la producción de lisil-fosfatidil-glicerol, a mutaciones en rpoB y rpoC (los genes rpo codifican diferentes subunidades de la ARN polimerasa bacteriana) pero también a mutaciones en otro numeroso grupo de genes (walK, cls, ggrA, etc.).

Palabras clave: Daptomicina, mecanismos de resistencia.

INTRODUCTION

Staphylococcus aureus is one of the main human bacterial pathogens. It shows a high pathogenic capacity, associated to a wide enzymes and toxins production capacity. Moreover, *S. aureus* has shown a high capacity for acquiring and accumulating mechanisms of resistance to antibiotics.

Methicillin-resistant *S. aureus* (MRSA) are resistant to all β -lactam antibiotics, excepting some recently released cephalosporins, and have become a main epidemiological problem worldwide. They are associated to longer hospital stays, longer antibiotic regimens, higher costs and greater mortality, compared to methicillin-susceptible *S. aureus* (MSSA). For years, the main alternative against MRSA were glycopeptide antibiotics (vancomycin, teicoplanin), especially in severe infections¹.

The emergence of glycopeptide-intermediate *S. aureus* (GISA) in 1997², and then glycopeptide-resistant *S. aureus*³, and the increasing antibiotic resistance in other Gram positive pathogens such as coagulase-negative staphylococci and enterococci, boosted the development of newer antibiotics active against multidrug-resistant (MDR) Gram positive pathogens, such as oxazolidinones, newer glycopeptides and lipopeptides.

DAPTOMYCIN: CHARACTERISTICS AND MECHANISM OF ACTION

Daptomycin is a cyclic lipopeptide produced by *Streptomyces roseosporus*. It consists of a 13-amino-acid depsipeptide, harboring a cyclic decapeptide core with three extra-cyclic amino acids attached to an aminoterminal fatty acid tail (figure 1), and is active against MDR Gram positives, including MRSA and *S. aureus* with reduced susceptibility to vancomycin⁴. Daptomycin has been shown 4 to 8-fold as active as vancomycin, and 30-fold as active as linezolid against MSSA and MRSA⁵. MICs of daptomycin against GISA are similar or slightly higher than MICs observed against MSSA and MRSA⁵. Some studies have shown that, in bacteremia caused by *S. aureus* with MIC of vancomycin >1mg/L, the early administration of daptomycin leads to a significant better clinical outcome^{6,7}, though other authors have not found significant differences⁸.

Daptomycin was the first lipopeptide antibiotic approved by the FDA, being available since 2003 for soft-tissue infections and from 2006 for *S. aureus* bacteremia and rightsided endocarditis.

The mechanism of action of daptomycin can be considered as unique, is currently not fully understood, and is probably much more complex and multifactorial than other antimicrobials. Daptomycin binds to the bacterial cytoplasmic membrane in the presence of physiological concentrations of calcium ions (50 μ g/ml), both in the growing and stationary phase, leading to depolarization due to the loss of potassium ions from the cytoplasm. This process leads to the interruption of multiple factors of the bacterial cell membrane without penetrating the cytoplasm. The alteration of cellular homeostasis leads to inhibition of bacterial vital processes, and thus to cell death⁹⁻¹².

Therapeutic failures have been described with daptomycin when administered at low concentrations^{6,13}.

EMERGENCE OF DAPTOMYCIN RESISTANCE IN *S. AUREUS*

The term non-susceptibility is preferred to resistance concerning daptomycin, since a MIC that determines resistance has not yet been established. The CLSI guidelines (2016)¹⁴ consider susceptible those microorganisms with daptomycin MIC <1 mg/L, and non-susceptible those microorganisms with daptomycin MIC \geq 1 mg/L.

Daptomycin non-susceptible *S. aureus* clinical isolates have been obtained both from patients treated with daptomycin, from patients who received other antibiotics and even from untreated patients^{13,15,16}. Nevertheless, daptomycin non-susceptibility is unusual in the clinical setting. Prior exposure to other drugs such as vancomycin does not seem to affect the clinical efficacy of daptomycin¹⁷. Different mechanisms have been proposed to explain the nonsusceptibility to daptomycin¹⁸:

- Increase in the bacterial membrane positive surface charge, due to the increase of phospholipids in its outer layer.
- Alteration in the bacterial membrane fluidity due to changes in the fatty acids composition.
- Increased carotenoid pigment content.

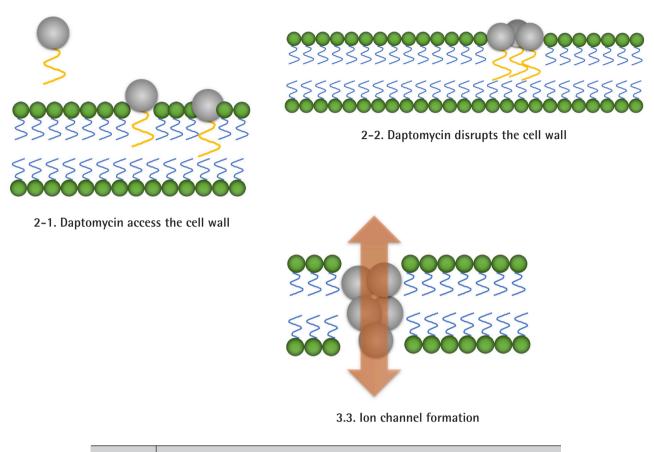


Figure 2 Mechanism of action of daptomycin

• Increased teicoic acid synthesis in the cell wall.

Obviously, combinations of several of these factors are also possible.

Song et al.¹⁹ developed a genomic, transcriptomic, ultrastructural and wall autolysis study on two daptomycin non-susceptible S. aureus isolates obtained *in vitro* (table 1). The emergence of daptomycin non-susceptible mutants was very uncommon $(<1x10^{-10})$. Nevertheless, the emergence of daptomycin non-susceptible mutants seems to be much more frequent when they are selected by using passages in increasing concentrations of daptomycin²⁰. Daptomycin non-susceptibilty seems to be linked to multiple mutations in a number of genes^{20,21}. Moreover, the kinetics of emergence of mutations associated to daptomycin non-susceptibility seems to be different in clinical isolates and in in vitro selected isolates (table 1). Friedman et al.²² compared non-susceptible clinical isolates obtained after treatments with daptomycin (MIC 4 mg/L), their parent susceptible isolates (MIC 0.2-0.5 mg/L), and daptomycin non-susceptible mutants obtained in vitro from *S. aureus* MW2, showing that mutations profiles can be very heterogeneous among mutants obtained in vitro, among mutants obtained *in vivo* and between both groups (table 1).

Nevertheless, despite this heterogeneity, in most cases, the genes affected are genes involved in cell membrane homeostasis^{19,23}. A study published by Jones et al.¹³ shows that daptomycin non-susceptible isolates have a more fluid cytoplasmic membrane, with increased lysylphosphatidyl glycerol translocation towards the outer face of the cytoplasmic membrane, and a greater transmembrane potential, as compared to daptomycin-susceptible isolates.

GENES INVOLVED IN DAPTOMYCIN NON-SUSCEP-TIBILITY

The *mprF* gene encodes for lysyl-phosphatidyl glycerol synthetase, an enzyme involved in the phospholipid metabolism. This is a protein with two functional domains²¹, which transfers positively charged lysine molecules and adds them to phosphatidyl glycerol in the cell membrane^{21,24,25}. Mutations in this gene lead to an increase in the lysyl-phosphatidyl glycerol production. The increase of this compound in the outer layer of the membrane results in a lower susceptibility to daptomycin and cathionic antimicrobial peptides^{22,26}. Mutations in this region have been associated to daptomycin non-susceptibility both in mutants obtained *in vitro* and

able 1	Mutations associated to daptomycin-resistance in <i>S. aureus</i> .				
Genes					
	In vitro*	Clinical isolates	In vitro*	In vitro*	Clinical isolates
mprF	P314L	S295L		L826F	G61V
	T345I	L826F			S295L
	T345A				S337L
					1420N
					T345I
					L826F
yycG (walK)	S221P	Adenine 26121	L9F		1471T
	R263C	insertion			
<i>гроВ</i>	1953S				L468Q
	A1086V				A477D
гроС	F632S				
	Q961K				
cls2				T33N	A23V
					L52F
					F60S
pgsA				V59N	
				A64V	
				K65R S177F	
agrA			Y100Stop		Adenine 712
					deletion
prs			A234V		
pnpA			L346P		
Reference	22	22	19	27	27

*Resistant mutants obtained in vitro from type strains.

in clinical isolates²². It is the only gene whose association to decreased daptomycin susceptibility has been demonstrated conclusively by gene deletion and complementation molecular studies. It is accepted that the lower daptomycin susceptibility is associated, in this case, to the increased synthesis of lysyl phosphatidyl glycerol, and an enhanced passage of this molecule to the outer layer of the membrane²⁶. This generates an increased electric repulsion force that hinders daptomycin to anchor to the phospholipid bilayer. mprF mutations are usually the first to appear, and they emerge relatively early in the selection process²². Peleg et al.²⁷ argued that mutations at the amino-terminal end would affect the transmembrane domains of the protein, while changes at the carboxy terminal end of mprF would result in an increase in protein lisinylation and in its translocation towards the outer layer of the membrane, so leading to an increase in the outer layer positive charge which would increase the electrical repulsion against the daptomycin molecule. Cameron et al.²³, observed that the

suppression of the *mprF* gene in *S. aureus* leads to a decrease in lysyl-phosphatidyl glycerol translocation to the outer layer, and causes a reduction of the positive charge and a decrease in daptomycin MIC up to 4-fold. Nevertheless, though *mprF* mutations are the most frequent changes in daptomycin nonsusceptible isolates, reduced susceptibility to daptomycin can also emerge in absence of *mprF* mutations²⁸.

The *yycG* gene, also known as *walK*, encodes for the synthesis of a histidine kinase sensor, and belongs to the *yycF*/*yycG* regulator. This regulator modulates the synthesis of a number of Gram positive proteins, including proteins involved in wall metabolism and permeability^{18,22,29,30}, as well as some virulence factors in *S. aureus*, *B. subtilis* and *S. pneumoniae*^{19,32}. The emergence of mutations in this gene has been associated to resistance to other antibiotics, such as vancomycin^{16,30}, and both alone and combined with mutations in *mprF*, have been also associated to daptomycin non-susceptibility in *S. aureus*¹⁶.

The *rpoB* and *rpoC* genes encode for bacterial RNA polymerase β and β' subunits^{18,22}. Mutations described in these two genes associated to daptomycin non-susceptibility are different from those affecting to other antibiotics, such as rifampicin. Unlike *mprF* mutations, which usually emerge at relatively early times during the selection process, *rpoB* and *rpoC* mutations appear later²². Some authors^{24,31} have shown that a single point mutation in the *rpoB* gene, such as A477D or A621E, can reduce the susceptibility both to daptomycin and vancomycin. Such mutations have been shown to cause cell wall thickening and reduction of the negative charge of the outer layer in *S. aureus*³¹.

Point mutations in *cls2* have also been associated to daptomycin non-susceptibility. This gene encodes for a cardiolipin synthase²³. Cardiolipin synthases in *S. aureus* are involved in the synthesis of cardiolipin from phosphatidyl-glycerol in some metabolic situations, such as the evolution from logarithmic to stationary growth phase³². Hypothetically, mutations in *cls2* might impair this metabolic path, leading to accumulation of phosphatidyl glycerol in the wall.

The *agrA* locus¹⁹ encodes a quorum sensing system in *S. aureus* which controls the expression of several genes, including virulence genes, through a two-component system^{33,34}. AgrA is a response regulator that upregulates its own promoter, P2, in the *agr* locus, and the RNAIII promoter. RNAIII is the effector of the *agr* system. Hundreds of genes have been identified to be upregulated by RNAIII³⁵. Otherwise, *agr* mutants show decreased autolysis^{36,37}.

The *pgsA* gene encodes for a phosphatidyl transferase involved in the synthesis of phosphatidyl glycerol²³, the most important anionic phospholipid in the cytoplasmic membrane. Mutations in this gene have been associated to daptomycin insensitivity in *B. subtilis*³⁸, but still not in *S. aureus. pgsA* mutations associated to daptomycin non-susceptibility have only been obtained *in vitro*, thus their trascendence in clinical isolates remains to be elucidated.

The *pnpA* gene encodes for a polynucleotide phosphorylase. Among other functions, this enzyme is required for the expression of certain virulence genes³⁹.

The products of the *dltABCD* operon are involved in the cell wall teicoic acid D-alanination in many Gram-positive bacteria²¹. Mutations in this operon would lead to a cell membrane positive charge increase, as happens with *mprF* mutations.

The suppression of clpX gene has been shown²⁴ to produce a small reduction in susceptibility to daptomycin and its inactivation decreases the virulence of *S. aureus*. The ClpX chaperone associates with ClpP peptidase for protein degradation and facilitates protein folding and interaction.

In whole, daptomycin resistance is still infrequent in the clinical settings, but is feasible especially when the microorganisms undergo steadily increasing antibiotic concentrations, and can emerge both from methicillinresistant and methicillin-susceptible staphylococci, though high-level resistant mutants seem to emerge more easily from MRSA (unpublished data). Daptomycin resistance is a complex process involving a wide number of genes and functions, though the most important mechanisms of resistance seem to be associated to the wall charge, metabolism and permeability.

Further studies are necessary to know the frequency and the real transcendence of each mutation *in vitro* and *in vivo*, and how these mutations, impact in the phenotype and in the biology of the microorganism.

REFERENCES

- 1. Gardete S, Tomasz A. Mechanisms of vancomycin resistance in *Staphylococcus aureus*. J Clin Invest 2014; 124: 2836–40.
- Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 2001; 1:147–55.
- Centers for Diseases Control and Prevention. *Staphylococcus aureus* resistant to vancomycin–United States, 2002. MMWR Morb Mortal Wkly Rep 2002; 51:565–7.
- Rybak MJ, Hershberger E, Moldovan T, Grucz RG. *In vitro* activities of daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin against staphylococci and enterococci, including vancomycinintermediate and -resistant strains. Antimicrob Agents Chemother. 2000; 44: 1062-6.
- 5. Tally FP, de Bruin MF. Development of daptomycin for grampositive infections. J Antimicrob Chemother 2000; 46: 523-6.
- Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant *Staphylococcus aureus* with a high vancomycin minimum inhibitory concentration: a casecontrol study. Clin Infect Dis 2012; 54: 51–8.
- Murray KP, Zhao JJ, Davis SL, Kullar R, Kaye KS, Lephart P, Rybak MJ. Early Use of Daptomycin Versus Vancomycin for Methicillin-Resistant *Staphylococcus aureus* Bacteremia With Vancomycin Minimum Inhibitory Concentration >1 mg/L: A Matched Cohort Study. Clin Infect Dis 2013; 56: 1562-9.
- Kalil AC, van Schooneveld TC, Fey PD, Rupp ME. Association between vancomycin minimum inhibitory concentration and mortality among patients with *Staphylococcus aureus* bloodstream infections: a systematic review and meta-analysis. JAMA 2014; 312: 1552–64.
- Zhang T, Muraih JK, Mintzer E, Tishbi N, Desert C, Silverman J, Taylor S, Palmer M. Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462. Biochim Biophys Acta 2013; 828: 302–8.
- Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in S. aureus. Antimicrob Agents Chemother 2003; 47: 2538–44.
- Alborn WE, Jr, Allen NE, Preston DA. Daptomycin disrupts membrane potential in growing S. aureus. Antimicrob Agents Chemother 1991; 35: 2282–7.
- 12. Allen NE, Alborn WE, Jr, Hobbs JN, Jr. Inhibition of membrane potential-dependent amino acid transport by daptomycin.

Antimicrob Agents Chemother 1991; 35: 2639-42.

- Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor AR, Sahl HG, Schrenzel J, Xiong YP, Bayer AS. Failures in clinical treatment of *S. aureus* infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 2008; 52: 269-78.
- 14. CLSI. 2016. Performance Standards for Antimicrobial Susceptibility Testing, 26th Ed. CLSI Supplement M100S. Wayne, Philadelphia (USA), Clinical Laboratory Standards Institute.
- Pfaller MA, Sader HS, Jones RN. Evaluation of the in vitro activity of daptomycin against 19,615 clinical isolates of gram-positive cocci collected in North American hospitals (2002–2005). Diagn Microbiol Infect Dis 2007; 57: 459–65.
- Howden BP, McEvoy CRE, Allen DL, Chua K, Gao W, Harrison PF, Bell J, Coombs G, Bennett-Wood V, Porter JL, Robins-Browne R, Davies JK, Seeman T, Stinear TP. Evolution of Multidrug Resistance during *Staphylococcus aureus* Infection Involves Mutation of the Essential Two Component Regulator WalKR. PLoS Pathog 2011; 7: e1002359.
- Culshaw D, Lamp KC, Yoon MJ, Lodise TP. Duration of prior vancomycin therapy and subsequent daptomycin treatment outcomes in methicillin-resistant S. aureus bacteremia. Diagn Microbiol Infect Dis 2015; 83: 193-7.
- Mishra NN, Rubio A, Nast CA, Bayer AS. 2012. Differential adaptations of methicillin-resistant *Staphylococcus aureus* to serial in vitro passage in daptomycin: evolution of daptomycin resistance and role of membrane carotenoid content and fluidity. Int J Microbiol. 2012; 2012: 683450.
- Song Y, Rubio A, Jayaswal RK, Silverman JA, Wilkinson BJ. Additional Routes to S. aureus Daptomycin Resistance as Revealed by Comparative Genome Sequencing, Transcriptional Profiling, and Phenotypic Studies. PLoS ONE 2013; 8: e58469.
- 20. Silverman JA, Oliver N, Andrew T, Li T. Resistance studies with daptomycin. Antimicrob Agents Chemother 2001; 45: 1799–802.
- Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A. The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion. PLoS Pathog 2009; 5: e1000660.
- Friedman L, Alder JD, Silverman JA. Genetic Changes That Correlate with Reduced Susceptibility to Daptomycin in S. aureus. Antimicrob Agents Chemother 2006; 50: 2137–45.
- Cameron DR, Mortin LI, Rubio A, Mylonakis E, Moellering Jr. RC, Eliopoulos GM, Peleg AY. Impact of daptomycin resistance on *Staphylococcus aureus* virulence. Virulence 2015; 6: 127–31.
- Bæk KT, Thøgersen L, Mogenssen RG, Mellergaard M, Thomsen LE, Petersen A, Skov S, Cameron DR, Peleg AY, Frees D. 2015. Stepwise Decrease in Daptomycin Susceptibility in Clinical *S. aureus* Isolates Associated with an Initial Mutation in rpoB and a Compensatory Inactivation of the clpX Gene. Antimicrob Agents Chemother 2015; 59: 6983–91.
- 25. Ernst CM, Peschel A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of

phospholipids. Mol Microbiol 2011; 80: 290-9.

- Yang SJ, Nast CC, Mishra NN, Yeaman MR, Fey PD, Bayer AS. Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in *S. aureus*: Evidence for Multiple Resistance Mechanisms. Antimicrob Agents Chemother 2010; 54: 3079-85.
- Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, Pillai S, Moellering RC Jr, Eliopoulos GM. Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of *Staphylococcus aureus*. PLoS ONE 2012; 7: e28316.
- Pillai SK, Gold HS, Sakoulas G, Wennersten C, Moellering RC Jr, Eliopoulos GM. Daptomycin nonsusceptibility in *Staphylococcus aureus* with reduced vancomycin susceptibility is independent of alterations in MprF. Antimicrob Agents Chemother 2007; 51: 2223-5.
- Dubrac S, Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of *S. aureus*. J Bacteriol 2004; 186: 1175-81.
- Dubrac S, Bisicchia P, Devine KM, Msadek T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 2008; 70: 1307-22.
- Cui L, Isii T, Fukuda M, Ochiai T, Neoh H, Camargo ILB Da C, Watanabe Y, Shoji M, Hiramatsu K. An *RpoB* Mutation Confers Dual Heteroresistance to Daptomycin and Vancomycin in *S. aureus*. Antimicrob Agents Chemother 2010; 54: 5222–33.
- 32. Koprivnjak T, Zhang D, Ernst CM, Peschel A, Nauseef WM, Weiss JP. Characterization of *Staphylococcus aureus* cardiolipin synthases 1 and 2 and their contribution to accumulation of cardiolipin in stationary phase and within phagocytes. J Bacteriol 2011; 193: 4134-42.
- Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 2003; 48: 1429–49.
- Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet 2008; 42: 541–64.
- Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, et al. Transcription profiling-based identification of *Staphylococcus aureus* genes regulated by the *agr* and/or *sarA* loci. J Bacteriol 2001; 183: 7341–53.
- 36. Sakoulas G, Eliopoulos GM, Fowler VG Jr, Moellering RC Jr, Novick RP, et al. Reduced susceptibility of *Staphylococcus aureus* to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (*agr*) function. Antimicrob Agents Chemother 2005; 49: 2687–92
- Fujimoto DF, Bayles KW. Opposing roles of the *Staphylococcus aureus* virulence regulators, *agr* and *sar*, in Triton X-100- and penicillin-induced autolysis. J Bacteriol 1998; 180: 3724–6.
- Hachmann AB, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann D. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in *Bacillus subtilis*. Antimicrob Agents Chemother 2009; 55: 4326–37.
- 39. Guillet J, Hallier M, Felden B. Emerging Functions for the *Staphylococcus aureus* RNome. PLoS Pathog 2013; 9: e1003767.