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Evaluación de un punto de corte 
farmacocinético-farmacodinámico para 
rifampicina en Acinetobacter baumannii 
mediante simulación de Monte-Carlo

RESUMEN

Introducción: El objetivo de este estudio es desarrollar un 
punto de corte farmacocinético (PK/PD) de rifampicina para 
Acinetobacter baumannii basado en modelos de simulación de 
Monte Carlo y compararlo con el valor de referencia estableci-
do por la Sociedad Francesa de Microbiología (SFM). 

Materiales y Métodos: Se ha realizado una simulación 
de Monte Carlo de 10.000 individuos que se administraba una 
dosis intravenosa de rifampicina a dos dosis 10 mg/kg/día y 20 
mg/kg/día. La distribución de CMI se calculó utilizado aislados 
clínicos de A. baumannii. Los parámetros farmacocinéticos cal-
culados fueron Cmaxlibre/CMI.

Resultados: Los valores de CMI50 y CMI90 fueron 2 y 32 
mg/L respectivamente, obteniéndose un rango de 0,023-32 
mg/L. De acuerdo con el criterio establecido por la SFM 468 
aislamientos (75,8%) eran sensibles (CMI ≤ 4 mg/L) y 150 
(24,2%) resistentes (CMI > 4 mg/L).

Para una dosis de 10 mg/Kg/día: la probabilidad (%) de alcan-
zar un cociente Cmaxlibre/CMI igual a 8 por simulación de Monte 
Carlo fue 0,4%, el valor de CMI de rifampicina por debajo del cual se 
podría inferir un escenario óptimo de tratamiento (objetivo ≥ 90%) 
fue ≤ 0,125 mg/L. La probabilidad de obtener un cociente Cmaxlibre/
CMI igual a 10 fue 0,2% y el punto de corte <0,125 mg/L.

A dosis de 20 mg/Kg/día: la probabilidad de obtener un cocien-
te Cmaxlibre/CMI igual a 8 fue 0,8% y el punto de corte 0,25 mg/L. 
Para Cmaxlibre/CMI de 10, fue 0,6% y 0,125 mg/L respectivamente. 
En base a estos resultados, el porcentaje de sensibilidad osciló entre 
0 a 1%, dependiendo de la dosis y del objetivo terapéutico evaluado.

Conclusión: los puntos de corte de rifampicina obtenidos en 
nuestra simulación de Monte Carlo difieren de los establecidos por 
la SFM, aunque estudios clínicos deberían corroborar estos resulta-
dos y mejorar el uso de este antibiótico.
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ABSTRACT 

Objective: The aim of this study is to develop a pharmacokine-
tic–pharmacodynamic (PK–PD) rifampin breakpoint for Acinetobac-
ter baumannii based on Monte Carlo simulation and to compare it 
with the reference value establish by the French Society for Micro-
biology (SFM). 

Methods: A 10,000 subject’s Monte Carlo simulation for ri-
fampin with intravenous dose of 10 mg/Kg/day and 20 mg/Kg/day 
was performed. The distribution of MIC was calculated using unique 
clinical isolates of A. baumannii. The PK–PD parameter calculated 
was Cmaxfree/MIC. 

Results: The isolates rifampin MIC50 and MIC90 were 2 and 
32 mg/L respectively, ranging between 0.023-32 mg/L. According 
to interpretive criteria established by the SFM: 468 (75.8%) isolates 
were susceptible (MIC ≤ 4 mg/L) and 150 (24.2%) were non suscep-
tible (MIC > 4 mg/L).

For 10 mg/Kg/day dose: the probability (%) of attaining Cmax-

free/MIC ratio values = 8 by Monte Carlo simulation in the study 
population was 0.4%, the rifampin MIC cut off value obtained from 
an optimal treatment (target ≥ 90%), was 0.125 mg/L. The probabi-
lity of obtaining a Cmaxfree/MIC ratio equal to 10 was 0.2% and the 
MIC cut off value obtained <0.125 mg/L.

At doses of 20 mg/kg/day: the probability of obtaining a Cmax-
free/MIC ratio equal to 8 was 0.8%, the rifampin MIC cut off value 
obtained was 0.25 mg/L. For a Cmaxfree/MIC = 10, it was 0.6% and 
0.125 mg/L, respectively. The percentage of susceptible isolates ran-
ging 0% to 1%, depending on the dose and therapeutic target used.

Conclusion: the rifampin breakpoints obtained from our PK/
PD Monte Carlo simulation differ from those established by SFM, 
although further clinical studies in patients are needed to confirm 
our findings and improve the use of this antibiotic.
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INTRODUCTION

A high number of nosocomial infections are caused by 
Acinetobacter baumannii, and due to its extraordinary ability 
to develop resistance to all available antibiotics pose a cha-
llenge to the clinicians for an empiric antibiotic treatment. 
Nowadays, the resistance rates to carbapenems, the gold stan-
dard for empiric treatment, ranges in our country from 50 to 
80%1, and the therapeutic arsenal is limited to colistin, tigecy-
cline, minocycline and rifampin2.

Rifampin has demonstrated in vitro and in vivo bacterici-
dal activities against multi-drug resistant (MDR) A. bauman-
nii3. Experimental models show that rifampin is efficacious in 
the treatment of severe infections caused by imipenem-resis-
tant A. baumannii strains4. Antibiotic combinations represent 
a therapeutic option in the treatment of MDR A. baumannii 
infections. In treatments involving antibiotics like rifampicin, 
combination therapy is used to avoid the appearance of anti-
microbial resistance. In fact, in our hospital the combination of 
rifampin and colistin, is the unique available treatment due to 
the high rate of carbapenem resistant strains. However, rifam-
picin, has the problem of ease of acquisition of resistance due 
to changes in the RNA polymerase encoded by chromosomal 
mutations that occur rapidly in the presence of the drug and 
hence the need to be associate with other antibiotics.

The antibacterial effect of rifampin is concentration de-
pendent. Moreover, the post-antibiotic effect of rifampin and 

the suppression of resistance is also concentration dependent. 
A previous work; have demonstrated that those effects we-
re best correlated with the maximum concentration of drug 
Cmax/MIC ratio5,6.

EUCAST and CLSI agencies do not establish breakpoints for 
rifampin in Gram negatives organisms. However, The French 
Society for Microbiology (SFM) is the unique that establishes 
a rifampin breakpoint for A. baumannii based on MIC distri-
butions (susceptible MIC of ≤ 4 mg/L, intermediate 8-16 mg/L 
and resistant MIC of >16 mg/L)7. These breakpoints are used 
routinely in our clinical laboratory setting to guide clinical 
decision-making but without pharmacokinetic–pharmacody-
namic (PK–PD) later confirmation.

The aim of this study is to develop a PK–PD rifampin 
breakpoint for A. baumannii based on Monte Carlo simulation 
and to contrast with French reference value.

MATERIAL AND METHODS

Determination of rifampin MIC in A. baumanii clinical 
isolates. A total 618 unique and non-duplicate A. baumannii 
(24. 8% imipenem susceptible and 99, 5% colistin susceptible) 
isolates obtained from abscesses and wounds [175, (28.3%)], 
respiratory specimens [299, (48.4%)], sterile fluids (including 
CSF) [34, (5.5%)], blood [37, (6%)], and urine [73, (11.8%)] from 
individual patients attended in the period 2007-2010 were 

Figure 1  MIC values distribution of Acinetobacter baumannii isolates against rifampin and MIC 
values vs % PK/PD target attainment.

Cmaxfree/MIC=8 (10 mg/Kg/day)

Cmaxfree/MIC=10 (10 mg/Kg/day)

Cmaxfree/MIC=8 (20 mg/Kg/day)

Cmaxfree/MIC=10 (20 mg/Kg/day)
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studied. MIC to rifampin was determined by the Epsilon-test® 
(AB biodisk, Biomerieux, France) according to manufacturer’s 
instructions with S. aureus ATCC 29213 used for quality 
control purposes. The modal MIC was reported as MIC50 and 
MIC90, the percent susceptibility was calculated according to 
interpretive criteria established by the French Society for Mi-
crobiology7.

Monte Carlo simulation. To calculate rifampin 
breakpoint, Microsoft Excel was used to perform a 10.000 sub-
jects Monte Carlo simulation for the intravenous rifampin do-
se of 10 mg/Kg/day and 20 mg/Kg/day (patient weight 70 Kg) 
using the following PK-PD equation: 

Where Cmax free: was the maximum concentration 
achieved in the serum (mg/L), dose: the dose of antibiotic 
(mg), Bioavailability: the fraction unbound to protein and 
Vss: the antimicrobial volume of distribution on steady sta-
te (L/Kg). Pharmacokinetic parameters included in the mo-
del were obtained from mean value and CI of the previous 
published data of Houin et al8. The pharmacodynamic para-
meters included in the model were obtained from the rifam-
pin MIC study of A. baumanii isolates from our hospital. The 
model permitted variation in protein binding. All the PK-PD 
parameters are assumed to be log-normally distributed in the 
population, and MICs were accepted at single values from 
0.125 to 32 mg/L.

A Cmaxfree/MIC of 10 was assumed as the target attain-

ment9. Additionally, a ratio of Cmaxfree/MIC of 8 (likely effecti-
veness) was also evaluated9. The PK/PD susceptible breakpoint 
was defined as the MIC at which the probability of target 
attainment (PTA) was 90%10. 

RESULTS

The isolates rifampin MIC50 and MIC90 were 2 and 32 
mg/L respectively, ranging between 0,023-32 mg/L. The MIC 
distribution is shown in figure 1, we highlight that two di-
fferent populations of A. baumannii with different suscepti-
bility of rifampin has been found, most of the isolates [496, 
(80.3%)] with MIC ≤ 8 mg/L and the remaining [122, (19.7%)] 
with MIC > 8 mg/L. According to interpretive criteria esta-
blished by the SFM: 468 (75.8%) isolates were susceptible 
(MIC ≤ 4 mg/L) and 150 (24.2%) were non susceptible (MIC 
> 4 mg/L).

For 10 mg/kg/day (figure 1 and 2): the probability (%) of 
attaining Cmaxfree/MIC ratio values = 8 by Monte Carlo simu-
lation in the study population was 0.4%, the rifampin MIC cut 
off value obtained from an optimal treatment (target ≥ 90%), 
was 0.125 mg/L. The probability of obtaining a Cmaxfree/MIC 
ratio equal to 10 was 0.2% and the MIC cut off value obtained 
< 0.125 mg/L.

At doses of 20 mg/kg/day (figure 1 and 2): the probability 
of obtaining a Cmaxfree/MIC ratio equal to 8 was 0.8%, the ri-

Figure 2  Probability (%) of attaining Cmaxfree/MIC ratio values by Monte Carlo simulation.
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Therefore, protein binding may explain the suboptimal clinical 
efficacy of current dose of rifampin.

Therefore, the results of our simulations allow us to ensu-
re that microorganisms included in the sensible category ac-
cording to the guidelines of the SFM can be considered as not 
susceptible decreasing the A. baumannii population capable of 
being treated with this antibiotic. Despite this, our study could 
be affected by some limitations, while PK/PD simulation can 
assist to establish more adjusted breakpoint, we do not forget 
that are based on number assumption. Moreover, in our study 
all pharmacokinetic parameter pertain to values measured in 
serum but it is well known that rifampin is widely distributed 
throughout the body. It is present in effective concentrations 
in many organs and body fluids, including cerebrospinal fluid14. 
Other limitation is that intracellular neither 25-O-desacetyl 
metabolite activities have been considered, neither the variabi-
lity of concentration due to the interaction by co-administered 
antibiotic.

In conclusion, the rifampin breakpoints obtained from our 
PK/PD Monte Carlo simulation differ from those established by 
SFM, although further clinical studies in patients are needed 
to confirm our findings and improve the use of this antibiotic.
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fampin MIC cut off value obtained was 0.25 mg/L. For a Cmax-
free/MIC = 10, it was 0.6% and 0.125 mg/L, respectively. 

The percentage of susceptible isolates ranging 0 to 1%, 
depending on the dose and therapeutic target used (figure 1).

DISCUSSION 
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a rifampin Cmaxfree/MIC ≥ 4 or 10 and AUC0-24h/MIC = 30 are 
not always attained with doses of 10 and 20 mg/kg/day, espe-
cially at the level of MIC50 and MIC90 level of our A. baumannii 
range MIC.
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