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From a microbiological point of view, Dr Cantón, Dr Mo-
rosini and Dr Aguilar present the mechanisms of action and 
the antimicrobial activity of ceftobiprole. As outlined above, 
ceftobiprole is a 5th generation (last generation) cephalo-
sporin with rapid bactericidal activity against a wide range of 
Gram-positive and Gram-negative bacteria, including methi-
cillin-susceptible and resistant Staphylococcus aureus (MSSA, 
MRSA) and susceptible Pseudomonas spp. 

Dr Azanza and Dr Sábada review the pharmacokinetic 
and pharmacodynamic (PK/PD) aspects of the molecule. Cef-
tobiprole has linear pharmacokinetics with no absorption via 
the oral route. It is well distributed in the extracellular liquid 
compartment at its normal dosage of 500 mg iv every 8 hrs. 
The majority of the administered drug is excreted via the kid-
neys: for this reason, dose or timing adjustments are required 
according to renal clearance in patients with moderate to se-
vere kidney failure. However, no dose adjustments are required 
according to weight or age, even in patients with mild to mod-
erate liver failure. Upon augmented renal clearance or when 
external clearance techniques are used, an increase in infusion 
time is required, and increased dosage might also be required 
for critically ill patients in the Intensive Care Unit (augmented 
renal clearance). The 2-hour intravenous infusion, along with 
the excretion half-life greater than 3 hours, allows for an op-
timal time T>MIC PK/PD parameter to be easily reached when 
the MIC is ≤4 mg/l. In critically ill patients with hyperdynamic 
circulation and creatinine clearance >150 ml/min, the infusion 
may be extended to 4 hours to achieve an adequate therapeu-
tic concentration.

Dr Cillóniz, Dr Dominedo, Dr Garcia-Vidal, and Dr Torres 
present their experience with ceftobiprole in pneumonia, the 
antibiotic is approved in major European countries) for the 
treatment of community-acquired pneumonia (CAP) and hos-
pital-acquired pneumonia (HAP) excluding patients with Ven-
tilator Acquired Pneumonia (VAP). In a phase-3 trial performed 
on patients with CAP, in which ceftobiprole was compared 
with ceftriaxone, with the possibility of adding linezolid upon 

The increase in resistance to antibiotics has been a 
concerning matter in recent years. Controlling the spread, 
the rational use of antibiotics and the search for new agents 
are among the most effective measures for controlling the 
progression of resistance. Fortunately, after a long period of 
time when antibiotic development was very limited, in the 
last few years new active molecules have appeared against 
Gram-positive microorganisms, especially methicillin-resistant 
Staphylococcus aureus (MRSA) (oxazolidinones, daptomycin, 
dalbavancin) and multi-resistant Gram-negative bacilli such 
as ESBL/carbapenemase-producing Enterobacteriaceae and/
or Pseudomonas aeruginosa (tigecycline, ceftolozane-
tazobactam, and ceftazidime-avibactam). However, in the 
majority of clinical situations, these antibiotics cannot be used 
as monotherapy in empirical treatment regimens because, 
despite their elevated intrinsic activity, their antibacterial 
spectrum is limited.

Recently, two new cephalosporins have been included in 
the antibiotic treatment armamentarium: ceftobiprole and 
ceftaroline. These are the first two cephalosporins with activi-
ty against both MRSA and non-ESBL-producing Enterobacte-
riaceae. In the case of ceftobiprole, its activity also extends to 
P. aeruginosa and a large number of Enterococcus faecalis. A 
beta-lactam with the antibiotic spectrum of ceftobiprole cer-
tainly constitutes an interesting option for empirical treatment 
as monotherapy as well as in combination with a variety of 
molecules if is needed to have the widest coverage for many 
nosocomial infections. 

This monograph reviews the most significant character-
istics of ceftobiprole, marketed in Spain since the end of 2018 
by Correvio under the commercial name Zevtera.
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suspicion or confirmation of MRSA, no significant differenc-
es were found in clinical efficacy. Similarly, ceftobiprole was 
non-inferior in clinical efficacy compared with linezolid asso-
ciated with ceftazidime in a phase-3 trial in HAP patients (ex-
cluding VAP). Patients who received ceftobiprole had an earlier 
clinical response, including cases with positive MRSA cultures. 
However, non-inferiority of ceftobiprole has not been demon-
strated in the VAP subgroup of patients.

The authors believe that ceftobiprole may be used in 
patients with CAP and suspected involvement of MSSA or 
MRSA; such as in the case of post-influenza pneumonia during 
flu epidemics, and in patients with HAP who do not require 
mechanical ventilation. 

Dr Soriano and Dr Morata will discuss some interesting 
aspects of the drug, such as the experience with ceftobiprole 
in staphylococcus bacteraemia. It has powerful activity against 
both methicillin-sensitive and resistant S. aureus as well as 
coagulase-negative Staphylococcus, isolated in episodes of 
bacteraemia. Its capacity for synergy with other antibiotics, es-
pecially daptomycin, suggests that this combination may be an 
option in the treatment of endovascular staphylococcal infec-
tions. On the other hand, ceftobiprole’s activity against other 
clinically relevant pathogens, such as E. faecalis and entero-
bacteria as well as P. aeruginosa, positions it as a possibility in 
the empirical treatment of catheter-related bacteraemia.

Dr Barberán discusses other possible indications for cef-
tobiprole. Due to its extended-spectrum coverage, which 
includes MRSA, ceftobiprole may be considered in the treat-
ment of complicated skin and soft tissue infections in special 
situations. In two comparative studies, one with vancomycin 
and another with vancomycin and ceftazidime, no significant 
differences were found. The same applies for diabetic foot in-
fection, where in one clinical study the therapeutic response to 
ceftobiprole was faster than with the comparator. The author 
also believes that due to the drug’s extended-spectrum antibi-
otic qualities, ceftobiprole may be an option for the empirical 
treatment of fever with no apparent focus in hospitalised pa-
tients without septic shock or severe immunosuppression, and 
for infections suspected to originate from vascular catheters.

Lastly, Dr Grau provides us with information concerning 
the safety and tolerability of ceftobiprole. In phase-3 studies, 
no significant differences have been observed against its com-
parators. On the other hand, and in contrast to other ceph-
alosporins, ceftobiprole presents a low risk of infection due 
to Clostridium difficile and, in comparison with ceftaroline, 
neutropenia has not been reported to present any significant 
issues.
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INTRODUCTION 

Staphylococcus aureus is responsible for serious skin, soft 
tissue and bone infections as well as pneumonia, and is one of 
the leading causes of bloodstream infections in Europe, par-
ticularly within intensive care units [1]. However, the emer-
gence of methicillin-resistant S. aureus (MRSA) in the 1960’s 
as a result of the widespread use of penicillin stifled the use of 
subsequent promising molecules e.g isoxazolyl-penicillins [2]. 

Methicillin resistance in S. aureus and other staphylococci 
is due to the acquisition and expression of the mecA or less 
frequently, the mecC gene. These genes code for a PBP2a variant 
of the penicillin binding protein (PBP) PBP2 which exhibits low 
affinity for nearly all β-lactams thus preventing the inhibition 
of cell wall synthesis by these antimicrobials [3]. According to 
the 2017 report of the European Antimicrobial Resistance 
Surveillance Network (EARS-net, www.ecdc.europa.eu) the EU/
EEA population-weighted mean MRSA percentage (in invasive 
isolates from blood stream and cerebrospinal fluid) was 16.9% 
(ranging from 1.0% to 44.4%, 25.8% in Spain). According to 
ECDC, this figure reaches 23.1% in ICUs in Europe [1].

The limited number of approved antimicrobials with 
activity against MRSA led to a strong demand for new agents 
to overcome this resistance. The fifth generation cephalosporins, 
ceftaroline and ceftobiprole, were the first β-lactams specifically 
designed to have activity against MRSA [4]. Ceftaroline was 
approved by European Medicines Agency in 2010, followed by 
ceftobiprole in 2013 in major European countries. 

Ceftobiprole is a bactericidal cephalosporin with an 
extended-spectrum of activity against both Gram-positive cocci 
and Gram-negative bacilli. Ceftobiprole demonstrates potent 
binding to PBPs from Gram-positive bacteria, including those with 
decreased β-lactam sensitivity, such as PBP2a in MRSA and PBP2x 
in penicillin-resistant Streptococcus pneumoniae (PRSP), the 
latter, in contrast to ceftriaxone. In Escherichia coli, ceftobiprole 
also exhibits strong binding to the essential PBP2 and PBP3.

ABSTRACT

Ceftobiprole, a novel last generation parenteral 
cephalosporin,  has an extended spectrum of activity, 
notably against methicillin-resistant Staphylococcus aureus 
(MRSA), ampicillin-susceptible enterococci, penicillin-
resistant pneumococci, Enterobacterales and susceptible 
Pseudomonas aeruginosa. It exerts an inhibitory action on 
essential peptidoglycan transpeptidases, interfering with cell 
wall synthesis. The inhibitory action of ceftobiprole through 
binding to abnormal PBPs like PBP2a in methicillin-resistant 
staphylococci and PBP2b and PBP2x in the case of β-lactam-
resistant pneumococci, ultimately leads to rapid bacterial 
cell death. In the case of Enterobacterales, ceftobiprole 
retains activity against narrow spectrum β-lactamases but 
is hydrolysed by their extended-spectrum counterparts, 
overexpressed Amp C, and carbapenemases. It is also affected 
by certain efflux pumps from P. aeruginosa. For anaerobic 
bacteria, ceftobiprole is active against Gram-positive 
Clostridioides difficile and Peptococcus spp. and Gram-
negative Fusobacterium nucleatum but not against Bacteroides 
group or other anaerobic Gram-negatives. In in vitro studies, 
a low propensity to select for resistant subpopulations has 
been demonstrated. Currently, ceftobiprole is approved 
for the  treatment  of community-acquired pneumonia and 
hospital-acquired pneumonia with the exception of ventilator-
associated pneumonia. Ceftobiprole’s place in therapy appears 
to lie mainly in its combined activity against Gram-positive 
organisms, such as S. aureus and S. pneumoniae alongside that 
against Gram-negative organisms such as P. aeruginosa. 

Key words: Ceftobiprole, methicillin-resistant Staphylococcus aureus; 
penicillin-resistant Streptococcus pneumoniae; Pseudomonas aeruginosa
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binding proteins. However, ceftobiprole does not bind to PBP5 
in E. faecium although, in the minority of E. faecium isolates 
that are ampicillin sensitive, ceftobiprole appears to be active 
[7-13, 14]. This effect has been shown to be much lower with 
ceftaroline, being this one 4-fold less effective on E. faecalis 
versus ceftobiprole [15].

Against Gram-negative bacteria, ceftobiprole exhibits high 
affinity for PBPs in Enterobacterales. However, ceftobiprole is 
inactive against Enterobacterales expressing Ambler’s Class A 
β-lactamases including ESBLs, overexpressed AmpC β-lacta-
mase types, and all carbapenemases. P. aeruginosa, when 
grown in the presence of ceftobiprole, produces filamentation, 
suggesting that PBP3 is the site of action [9]. Ceftobiprole is 
ineffective against P. aeruginosa expressing Ambler’s Class A 
β-lactamases including ESBLs and all carbapenemases, as class 
A (PSE-type, GES and others), metallo-carbapenemases (IMP 
and VIM) and D (OXA-10). Ceftobiprole is partially and slowly 
hydrolysed by AmpC and interestingly, unlike ceftazidime and 
cefepime, did not select AmpC derepressed mutants [16]. In 
a similar fashion, ceftobiprole, and ceftaroline display limited 
activity against Acinetobacter spp., Burkholderia cepacia and 
Stenotrophomonas maltophilia [14, 17].

Unlike ceftaroline, ceftobiprole also exhibits a binding 
profile similar to that of cefepime and ceftazidime to 
PBPs in P. aeruginosa but with enhanced binding to PBP2. 
These properties explain the extended-spectrum activity of 
ceftobiprole and its indication in nosocomial pneumonia 
in which P. aeruginosa is a common pathogen [4-6]. In 
addition, in single-step and serial passage in vitro resistance 
development studies, ceftobiprole demonstrates a low 
propensity to select for resistance [6]. 

In this article we review the mechanism of action of cef-
tobiprole as well as its antimicrobial activity in international 
surveillance studies.

MECHANISM OF ACTION AND ANTIMICROBIAL 
PROFILE

Ceftobiprole is a parenteral pyrrolidinone-3-ylidene-me-
thyl cephalosporin (figure 1) with an extended-spectrum of 
activity against MRSA, other Gram-positive bacteria (S. pneu-
moniae and Enterococcus faecalis) and Gram-negative bac-
teria (Enterobacterales and P. aeruginosa) exerted through 
the inhibition of essential peptidoglycan transpeptidases. Like 
other cephalosporins, the binding of ceftobiprole to PBPs in-
terferes with cell wall synthesis, inhibiting cell growth and ul-
timately leading to bacterial cell death. Ceftobiprole exhibits a 
rapid bactericidal mode of action on an extended spectrum of 
clinically important Gram-positive and Gram-negative patho-
gens [5]. 

The bactericidal activity of ceftobiprole against MRSA 
sets it apart from other cephalosporins (with the exception of 
ceftaroline). Their efficacy as anti-MRSA is due to a successful 
inhibitory interaction with the extended narrow groove of the 
PBP2a active site coded by mec genes, favouring its acylation, 
inhibiting cell growth and, ultimately, leading to bacterial cell 
death. The molecular structures of first to fourth generation 
cephalosporins do not lead to suitable binding to PBP2a. The 
presence of a large hydrophobic side chain at C3 in the cefto-
biprole molecule facilitates a conformational change in PBP2a 
leading to a stronger and energetically more favourable inter-
action with the PBP2a site groove and the formation of a stable 
acyl-enzyme complex. This interaction along with ceftobiprole’s 
affinity for a range of other staphylococcal PBPS such as PBP1, 
PBP3, and PBP4 explains its high activity against staphylococci, 
including coagulase-negative isolates [7] Figure 2 comparatively 
includes the interaction of ceftobiprole and other beta-lactams 
with PBPs from different microorganisms [8-12]. 

Ceftobiprole demonstrates potent binding to PBPs in 
other Gram-positive bacteria, including those resistant to 
other β-lactam antibiotics, such as is the case of penicillin-
intermediate and-resistant S. pneumoniae isolates. In these 
resistant strains, ceftobiprole exerts higher binding affinity to 
PBP2b and PBP2x than ceftriaxone [13]. 

The bactericidal activity against E. faecalis is a unique 
characteristic of ceftobiprole among the cephalosporins and is 
attributed to the high affinity for the enterococcal penicillin 

Figure 1	� A: Ceftobiprole, the active cephalosporin. 
B: Ceftobiprole medocaril, the water-
soluble prodrug. Substitution at position 
7 of the cephem by an oxyimino 
aminothiazolyl confers remarkable 
betalactamase stability and substitution 
at position 3 with a vinylpyrrolidinone 
moiety facilitates the association of the 
molecule with PBP2a and hence facilitates 
the subsequent acylation reaction. 
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[20-24]. For ceftaroline, the regular schedule is 600 mg every 
12 h with 1 h IV infusion, although recently, a higher posology 
of 600 mg every 8 h with an extended 2 h IV infusion has been 
approved for cSSTI due to S. aureus [25]. This higher dosing 
regimen might assure coverage of MRSA isolates displaying 
at least a ceftaroline MICs of 2 mg/l, but this posology is not 
approved for community acquired pneumonia by the EMA. 
For ceftobiprole, the higher breakpoints ascertain coverage is 
achieved without increasing the standard dose. 

Apart from its affinity against altered PBP2a in methi-
cillin-resistant staphylococci and PBPs involved in penicillin 
(PBP2b) and ceftriaxone (PBP2x) resistance in S. pneumo-
niae, the extended-spectrum of ceftobiprole activity is due 
to its ability to withstand hydrolysis by many β-lactamases, 
like PC1 from S. aureus, the narrow spectrum TEM and SHV 
β-lactamases from Escherichia coli and Klebsiella pneumoniae, 
respectively, among other Enterobacterales. However, as indi-
cated above, ceftobiprole is susceptible to the hydrolysis by the 
extended-spectrum β-lactamases (ESBLs), all molecular types 
of carbapenemases (A, B and D) and overexpressed or dere-
pressed AmpC β-lactamase types from both Enterobacterales 
and P. aeruginosa. In addition, overexpression of certain efflux 
pumps like MexXY from this latter organism also diminishes 
ceftobiprole activity [18, 26]. All of these resistance mecha-
nisms equally affect ceftaroline. 

In a recent surveillance study that included key target 
pathogens [27], ceftobiprole exhibited potent activity against 
S. aureus isolates (including MRSA isolates, which were 99.3% 
susceptible), coagulase-negative staphylococci (100% sus-
ceptible), E. faecalis (100% susceptible), and S. pneumoniae 
(99.7% susceptible). Likewise, ceftobiprole was highly active 
against enterobacterial isolates that did not exhibit an ESBL 
phenotype, including E. coli (99.8% susceptible) and K. pneu-

Ceftobiprole is active against both non- and β-lactamase-
producing Haemophilus influenzae and Moraxella catarrhalis, 
and against Neisseria spp. 

For anaerobic bacteria, ceftobiprole is active against 
Gram-positive Clostridioides difficile, Peptococcus spp. and 
Fusobacterium nucleatum but not against the Bacteroides 
group and other anaerobic Gram-negatives [18]. Ceftobiprole 
has limited activity against Gram-negative anaerobes such 
as Bacteroides fragilis and Bacteroides spp. β-lactamase 
negative anaerobes are more susceptible to ceftobiprole than 
β-lactamase-positive isolates, suggesting that ceftobiprole 
is hydrolysed by most β-lactamases found in these bacteria. 
Ceftobiprole is also active against Cutibacterium acnes, 
Peptostreptococcus spp., Clostridium innocuum, Finegoldia 
magna, and many strains of Porphyromonas spp. It 
demonstrates lower MICs for Clostridium perfringes and 
Clostridiums difficile than other cephalosporins, and has been 
shown to be less active in vitro than ceftriaxone against isolates 
of Fusobacterium spp., Prevotella spp. and Veillonella spp. [19].

CLINICAL BREAKPOINTS AND IN VITRO ACTIVITY

Ceftobiprole clinical breakpoints and ECOFF values 
(EUCAST, 2019. www.eucast.org) for Gram-positive and 
Gram-negative species in comparison with those defined 
for ceftaroline are shown in table 1. EUCAST has not yet 
established ECOFF values for all the targeted species, however, 
where ECOFF values are defined for both for ceftobiprole and 
ceftaroline, they are similar. However, it should be noted 
that PK/PD breakpoints are higher for ceftobiprole than for 
ceftaroline. This situation reflects the favourable T>MIC PK/
PD index for ceftobiprole associated with its administration 
schedule, 500 mg every 8 h with an extended 2 h IV infusion 

Microorganism

Ceftobiprole Ceftaroline

Clinical breakpoints (mg/L)
ECOFF (mg/L)

Clinical breakpoints (mg/l)
ECOFF (mg/L)

Susceptible (≤) Resistant (>) Susceptible (≤) Resistant (>)

S. aureus (including MRSA) 2 2 1 1* 1**

2***

0.5

S. pneumoniae (including PNSa) 0.5 0.5 0.03 0.25 0.25 0.03

E. faecalis -b - NDc - - ND

Enterobacterales 0.25 0.25 0.12-0.25 0.5 0.5 0.12-0.25

P. aeruginosa IEd IE 8 - - ND

H. influenzae IE IE 0.25 0.03 0.03 0.03

M. catarrhalis IE IE ND IE IE ND

Non-species relatede 4f 4 - 0.5 0.5 -

Table 1	� Ceftobiprole and ceftaroline breakpoints and ECOFF values of bacterial species and groups, 
according to EUCAST-2019. 

*Including pneumonia; **Pneumonia isolates; *** Other isolates than pneumonia; aPenicillin-non-susceptible; b-: no breakpoint; cND: not determined; 
dIE: insufficient evidence; ePK-PD breakpoints; fBased on PK-PD target for Gram-negative organisms.
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high intrinsic activity against S. pneumoniae, although MIC 
increased with the decrease of penicillin susceptibility. Overall, 
only 0.15% of S. pneumoniae were considered resistant. For P. 
aeruginosa and using the EUCAST non-species-specific PK/PD 
breakpoints (susceptible ≤4 mg/L; resistant >4 mg/L), 78.4% 
of the ceftazidime-susceptible isolates were also susceptible 
to ceftobiprole but this percentage decrease to 22.7% in 
ceftazidime-resistant isolates. MIC distributions of all these 
isolates is summarised in figure 3. 

ANTIMICROBIAL RESISTANCE 

To date, ceftobiprole has demonstrated a low potential 
to select for resistance. Although staphylococci have a proven 
ability to develop resistance to most antibiotics in clinical use, 
results from in vitro studies indicate that the potential for MRSA 
to become resistant to ceftobiprole appears to be low [29]. 
Different studies using laboratory strains submitted either to 
serially growing concentrations or to continuous challenge with 

moniae (99.6% susceptible) isolates. A total of 99.6% of all H. 
influenzae and M. catarrhalis isolates were inhibited by 1 mg/L 
of ceftobiprole, and 72.7% of the P. aeruginosa isolates were 
susceptible to ceftobiprole (table 2). In this study, susceptibility 
values were established using EUCAST breakpoints. The cor-
responding values for ceftaroline are also included in table 2. 
With the exception of E. faecalis and P. aeruginosa, in which 
ceftobiprole displayed a clearly higher intrinsic activity, the 
activity of both cephalosporins were within one-fold dilution 
of each other. Nevertheless, rates of ceftobiprole susceptible 
MRSA isolates were higher than for ceftaroline. 

The high coverage of ceftobiprole in key pathogens, 
including S. aureus, S. pneumoniae and P. aeruginosa with 
relevant resistance mechanisms is shown in figure 3. Data 
were obtained for a large multicentric study in different 
European countries over a five-year period [28]. In the case of 
S. aureus, all methicillin susceptible isolates were susceptible 
to ceftaroline and only 1.7% of MRSA isolates were considered 
non-susceptible to ceftobiprole. Ceftobiprole displayed a 

Species Antimicrobial
MIC (mg/L)

% Susceptibility*
MIC50 MIC90 MIC range

S. aureus Ceftobiprole 0.5 2 ≤0.03-4 99.7

Ceftaroline 0.25 2 ≤0.06-4 98.5

MRSA Ceftobiprole 1 2 0.25-4 99.3

Ceftaroline 0.5 1 0.25-4 96.4

CoNSa Ceftobiprole 0.5 1 ≤0.03-4 100.0

Ceftaroline 0.25 0.5 ≤0.06-2 -c

MRCoNSb Ceftobiprole 1 1 0.12-4 100.0

Ceftaroline 0.25 0.5 ≤0.06-2 -c

S. pneumoniae Ceftobiprole 0.015 0.5 0.002-1 99.7

Ceftaroline ≤0.008 0.12 ≤0.008-0.5 99.7

E. faecalis Ceftobiprole 0.5 2 ≤0.03-4 100.0

Ceftaroline 2 8 ≤0.06->8 -c

E. coli Ceftobiprole 0.03 >16 0.015->16 82.5

Ceftaroline 0.12 >32 ≤0.015->32 78.5

K. pneumoniae Ceftobiprole 0.03 >16 0.015->16 83.4

Ceftaroline 0.12 >32 ≤0.015->32 80.4

P. aeruginosa Ceftobiprole 2 16 0.12->16 72.7

Ceftaroline 16 >32 0.25->32 -c

H. influenzae Ceftobiprole 0.06 0.12 0.015->1 92.0

Ceftaroline 0.015 0.03  0.002-2 92.0

M. catarrhalis Ceftobiprole 0.12 0.25 ≤0.008->1 -c

Ceftaroline 0.12 0.25 0.002-2 -c

Table 2	� Summary of activities of ceftobiprole against Gram-positive and Gram-negative species 
(Adapted from reference [20])

*EUCAST criteria; acoagulase-negative staphylococci; bmethicillin-resistant coagulase-negative staphylococci, cbreakpoints have not been established
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chopulmonary infections, only one ceftobiprole resistant strain 
(MIC 4 mg/L) was detected among the MRSA (n=115) subpopu-
lation [32]. This strain (clonal complex, CC8) was a PVL-negative 
MRSA strain isolated from a tracheal aspirate, presenting a mu-
tation in PBP2a previously associated with low-level resistance 
to ceftobiprole and ceftaroline. The strain was resistant to both 
ceftobiprole and ceftaroline, but remained susceptible to van-
comycin, daptomycin, and linezolid. The authors noted that the 
MRSA subpopulation displayed higher ceftobiprole MIC50 and 
MIC90 (1 mg/L), and interestingly, that the genetic background 
of S. aureus strains (agr group and CC) may slightly impact the 
strain susceptibility to ceftobiprole [32]. 

During a one-year surveillance study in an Italian Hos-
pital, 12% of ceftobiprole resistance (12/102 isolates; MIC, 4 
mg/L) among the MRSA population (only mecA producers) 
was found. After epidemiological characterization, isolates be-
longed to different clones, as well as substitutions in all PBPs 
and with a novel insertion in PBP2a [26]. It is worth mention-
ing that ceftobiprole became available at the hospital only one 
year before the study took place thus selective pressure for 
this situation can be excluded [33]. 

subinhibitory levels of the antibiotic, demonstrated that the 
most frequent changes leading to in vitro resistance are due to: 
i) Mutations in the mecA gene that result in amino acid changes 
within the transpeptidase domain of PBP2a together with 
changes in the non-penicillin-binding domain, ii) Non mecA-
mediated mechanisms of resistance resulting from mutations 
in different PBPs, PBP4 (a non-essential, low-molecular weight 
PBP of S. aureus) being the most frequently involved. Mutations 
in PBP4 occurred in the structural coding gene and/or in its 
promoter region. It should also be noted that those modifications 
in pbp4 gene and its promoter produce a highly crosslinked 
cell wall peptidoglycan, indicative of increased transpeptidase 
activity associated with greatly increased amounts of membrane 
PBP4 [30]. Moreover, additional mutations in other genes such 
as ClpX endopeptidase, PP2C protein phosphatase, transcription 
terminator Rho, and GdpP phosphodiesterase, have all 
been involved in fifth-generation cephalosporins resistance 
development [31]. 

At present, few studies describe the presence of ceftobi-
prole resistance among clinical isolates. In a study conducted in 
France with 440 S. aureus (MSSA and MRSA) isolates from bron-

Figure 2	 �Ceftobiprole binding to PBPs of different microorganisms in 
comparison with other beta-lactam compounds [7-12]

Staphylococcus spp.

PBP1 PBP2 PBP2a PBP3 PBP4

Ceftobiprole ✔ ✔ ✔ ✔ ✔

Ceftaroline ✔ ✔ ✔ ✔ ✘

Ceftriaxone ✔ ✔ ✘ ✔ ✘

Meropenem ✔ ✔ ✘ ✔ ✔

Piperacillin ✔ ✔ ✘ ✔ ✔

Escherichia coli

PBP1a PBP1b PBP2 PBP3 PBP4 PBP5 PBP6

Ceftobiprole ✔ Some ✔ ✔ ✔ ✘ ✔

Ceftazidime ✔ ✔ Some ✔ ✘ ✘ ✘

Cefepime ✔ Some ✔ ✔ ✘ ✘ ✘

Imipenem ✔ ✔ ✔ ✘ ✔ ✔ ✔

Piperacillin ✔ Some ✔ ✔ ✔ ✘ ✘

Ceftolozane ✘ ✔ ✘ ✔ ✘ ✘ ✘

Pseudomonas aeruginosa

PBP1a PBP1b PBP2 PBP3 PBP4 PBP5/6

Ceftobiprole ✔ ✔ ✔ ✔ ✔ ✘

Ceftazidime ✔ ✔ ✘ ✔ ✔ ✘

Cefepime ✔ ✔ Some ✔ ✔ ✘

Imipenem ✔ ✔ ✔ ✔ ✔ ✔

Piperacillin ✔ ✔ ✔ ✔ ✔ ✘

Ceftolozane ✘ ✔ ✔ ✔ ✔ ✘

✘: not biologically relevant;  PBP, penicillin-binding protein
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Figure 3	 �MIC distributions of methicillin-
susceptible and resistant S. aureus (A), 
penicillin-susceptible, -intermediate 
and -resistant S. pneumoniae (B) and 
ceftazidime-susceptible and -resistant 
P. aeruginosa (C) isolates recovered from 
European surveillance studies (data 
obtained from reference [21])

Though the presence of resistant isolates in the 
clinical setting is at present scarcely observed, ceftobiprole 
susceptibility screening is essential to avoid therapeutic failure 
and the spread of resistant strains. Close microbiological 
monitoring of isolates should be maintained to prevent 
resistant strains diffusion by early detection of changes 
in susceptibility pattern. In a recent surveillance study 
monitoring ceftobiprole susceptibility performed in USA with 
blood isolates, only 0.3% (4 isolates over 558 tested isolates) of 
MRSA were non-susceptible to ceftobiprole [34]. 

CONCLUSIONS

Ceftobiprole is a novel parenteral extended-spectrum 
cephalosporin covering resistant Gram-positive and Gram-neg-
ative organisms due to its inhibition of abnormal PBP2a in 
MRSA and PBP2b and PBP2x in the case of β-lactam-resistant 
pneumococci. Moreover, it is also effective against Enterobac-
terales not producing extended-spectrum β-lactamases, AmpC 
overproducers or carbapenemases, and susceptible P. aerugi-
nosa. This activity and results from clinical trials positions this 
cephalosporin for the treatment of community-acquired pneu-
monia and hospital-acquired pneumonia with the exception 
of ventilator-associated pneumonia in patients who require 
a broad-spectrum treatment with the highest safety due to 
the novel broad spectrum of coverage that has been shown as 
cephalosporin. 
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Ceftobiprole, a beta-lactam antibiotic belonging to the 
cephalosporin group, is the latest inclusion into the select 
group of active drugs against these types of bacteria, hence 
the interest in practically describing the primary pharma-
cokinetic and pharmacokinetic/pharmacodynamic (PK/PD) 
characteristics in order to achieve more efficient use of this 
drug.

PHARMACOKINETICS

General Information. Ceftobiprole is a cephalosporin 
that is administered in the form of the prodrug ceftobipro-
le medocaril, which is rapidly converted in the plasma, likely 
through esterases, to its active fraction; ceftobiprole. The ap-
proved dose is 500 mg every 8 hours administered intrave-
nously as a 120 minute infusion. This cephalosporin presents 
linear pharmacokinetics after a single dose and multiple doses 
between 125 and 1,000 mg [1-3]; furthermore, the pharma-
cokinetics are independent of the duration of administration 
[4]. The state of equilibrium is achieved during the first day 
[5], there is no drug accumulation when administered every 
8 h in patients with normal kidney function [4], which is fully 
justified considering the elimination half-life of about 3 h. Ta-
ble 1 [6] shows the pharmacokinetic parameters obtained after 
administration of the approved dose of 500 mg in a 2-hour 
infusion to healthy volunteers.

Systemic exposure defined by the area under the curve 
during the dosing interval (AUC0-τ), and maximum plasma con-
centration (Cmax) reached on day 5 were similar to those de-
termined on day 1 (AUC 102 ± 11.9 and 90 ± 12.4 mg h/l, re-
spectively; Cmax, 33 ± 4.83 and 29.2 ± 5.52 mg/l, respectively). 

The renal clearance and systemic clearance values did not 
change either in relation to the day of administration, kidney 
clearance for the first day being 4.28 ± 0.57, and 4.08 ± 0.72 
l/h on day 5, resulting in total clearance on these same days of 
4.98 ± 0.58 and 4.89 ± 0.69 l/h, respectively. 

ABSTRACT

Ceftobiprole shows many similar pharmacokinetic proper-
ties to other cephalosporins, except for not being orally bioac-
tive, and that it is administered by IV infusion as the prodrug 
ceftobiprole medocaril, which is subsequently hydrolyzed in 
the blood into the active molecule. Distribution focus in ex-
tracellular fluid and active antibiotic concentration has been 
proven in different corporal tissues using dosing regimen of 
500 mg intravenous infusion over 2 h every 8 h. Ceftobiprole is 
eliminated exclusively into the urine, thus the reason why dose 
adjustment is required for patients with moderate or severe 
renal impairment, or increased creatinine clearance. However, 
there is no need for dose adjustments related with other co-
morbidities and patients’ conditions such as age, body weight. 
Although considering distribution features, molecular weight 
and dose fraction, increase dosing regimen might be necessary 
in patients using renal replacement therapy. The half-life of 
ceftobiprole is more than 3 h, allowing to easily reach optimal 
PK/PD parameters with the infusion time of 2 h, using the usu-
al dosing regimen.

Keywords: Ceftobiprole, clinical pharmacokinetics, PK/PD relationships

INTRODUCTION

The on-going and rapid development of antibiotic resist-
ance of different pathogens is now a growing concern leading 
to potential risks for patients. The specific case of Gram-posi-
tive bacteria is not impervious to this situation, for which rea-
son the availability of a new drug that allows for specifically 
directed treatment toward resistant forms is welcome. 
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The penetration of ceftobiprole was evaluated in bron-
choalveolar lavage (BAL) fluid in healthy subjects following the 
administration of 4 conventional doses of ceftobiprole [12], 
verifying that the BAL concentration was lower than in plasma 
8h after starting the infusion, reporting a value of 25.5% in 
relation to BAL/plasma concentration.

Excretion. Ceftobiprole is predominantly excreted in the 
urine [4, 6] as indicated by total clearance values, which co-
incide with kidney clearance. Approximately 80-90% of the 
drug administered may be recovered unaltered in the urine 
[1, 4]. Excretion occurs primarily through glomerular filtration 
and it appears that active tubular secretion is not involved [4], 
therefore, no interactions are expected in the kidney excretion 
of the drug [13]. This circumstance justifies the fact that the 
pharmacokinetics of ceftobiprole are modified in patients with 
kidney failure [14]. At the same time, it justifies the limited 
presence of ceftobiprole in the intestinal lumen, which ex-
plains why active drug concentrations have not been detected 
in the faeces of healthy subjects who received IV infusions of 
500 mg/8 h ceftobiprole for 7 days. This characteristic may ac-
count for the rare incidence of effects on the intestinal flora, 
as well as not detecting C. difficile or its toxin in ceftobipro-
le-treated patients [15].

PHARMACOKINETICS IN SPECIAL SITUATIONS 

Patients with kidney failure. Ceftobiprole is almost en-
tirely passively excreted unchanged through glomerular fil-
tration, it is therefore important to know the impact that the 
presence of kidney failure could have on pharmacokinetics and 
the corresponding dose adjustment. 

To that end, a study was conducted in which the pharma-
cokinetic parameters of administering a single 250-mg dose 
in one 30-minute infusion in healthy volunteers and subjects 
with different degrees altered kidney function were compared 
[14, 16].

As shown in table 2, kidney clearance for ceftobiprole was 
reduced in a significant manner in patients with moderate to 
severe kidney failure (80% and 91%, respectively) when com-
pared with normal kidney function. Systemic clearance and 
kidney clearance showed a linear relationship with patients’ 
creatinine clearance (CrCl) (correlation coefficient of 0.98 in 
both cases), confirming that required dose adjustment accord-
ing to kidney function may be predicted based on creatinine 
clearance [14].

A study conducted on patients with terminal kidney fail-
ure requiring dialysis [14] demonstrated that systemic expo-
sure expressed as a value of area under the curve between 0 
and infinity (AUC0-∞), was 3.2 times higher in subjects with al-
tered kidney function than in healthy subjects when analysed 
pre-dialysis, and approximately 7 times higher when analysed 
post-dialysis. This finding is explained through the reduction 
of systemic clearance with subsequent increase in half-life. It 
has been estimated that ceftobiprole extraction during a 4-h 

The drug elimination half-life was 3.3 ± 0.3 h the first day 
and 3.1 ± 0.3 h on day 5 [4, 6].

Distribution. A volume of distribution of 21.7 ± 3.3 l and 
15.5 ± 2.33 l on day 1 and day 5, respectively, has been re-
ported. This volume of distribution is similar to extracellular 
volume for an adult patient, information consistent with that 
of the vast majority of beta-lactam antibiotics in general and 
cephalosporins in particular [6]. The plasma protein binding of 
ceftobiprole is very low, only 16% of it is albumin-bound [5], 
which facilities this drug’s penetration of several body tissues. 

Ceftobiprole’s penetration of soft tissues, including adipose, 
and bone tissue, has been studied, following the administration 
of a single dose of 500 mg of ceftobiprole over a 2-h infusion 
in healthy volunteers, using microdialysis measures. Striated 
muscle penetration of 69% and adipose tissue penetration of 
49% were determined [7]. In adult patients who received 500 
mg ceftobiprole in an IV infusion before undergoing hip pros-
thesis surgery, ceftobiprole exposure in cortical bone was 3.5 
times higher than what was determined for spongy bone [8]. 
The ratio between tissue and plasma concentrations was 0.22 
for cortical bone and 0.06 for spongy bone (0.15-0.3) [9]. The PK/
PD study performed using the collected data confirmed that the 
likelihood of reaching a value of T > MIC of 30-40% was >90% 
in all tissues evaluated when MIC was 2 mg/l [10].

The clinical relevance of this PK/PD profile has been 
shown in relation to the differences evaluated in a rabbit tibia 
infection model in which the administration of this drug for 4 
weeks reduced the bacterial count to below detectable limit 
in all animals treated, while it was reduced by 73% in animals 
treated with vancomycin or linezolid [11].

Dose (mg) 500

Perfusion time (hours) 2

Cmax (mg/l) 29.2 ± 5.5

AUC0-∞ (mg h/l) 104 ± 13

t½ (h) 3.1 ± 0.3

Vd (l) 21.7 ± 3.3

Plasma protein binding (%) 16

Clt (l/h) 4.8 ± 0.7

Clr (l/h) 4.1 ± 0.7

Active urinary excretion (%) 83.1 ± 9.1

Table 1	� Single dose ceftobiprole. 
Pharmacokinetic parameters [2, 4, 6]

Cmax: maximum plasma concentration
AUC0-∞: extrapolated area under the curve
t½: excretion half-life
Vd: volume of distribution
Clt: total clearance
Clr: kidney clearance
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ml/min compared to those with normal clearance or reduced 
creatinine clearance (table 3).

In patients which presented elevated creatinine clearance 
the drug is excreted from the plasma faster but at the same 
time there is greater distribution, preventing changes to the 
excretion half-life but leading to lower plasma concentra-
tions. The authors indicated that ceftobiprole administered in a 
4-hour infusion time was able to reach and maintain a plasma 
concentration of the free drug that exceeded MIC throughout 
the dosing interval. At a dose of 500 mg, the T>MIC value was 
91%, demonstrating that the conventional dose administered 
in a 4-h infusion also provided therapeutic concentrations 
[18].

Therefore, prolonging the infusion to 4 hours may opti-
mise drug exposure with a standard dose of ceftobiprole of 
500 mg/8 h administered to patients with creatinine clearance 
above 150 ml/min [5].

Paediatric patients. The pharmacokinetic properties of 
ceftobiprole have been evaluated in 55 children aged 3 months 
to 18 years requiring systemic antibiotic therapy [19]. The drug 
was administered in a 2-hour infusion with doses adjusted 
to 15 mg/kg for patients aged 3 months to 6 years, 10 mg/kg 
when aged 6 to 12 years, and 7 mg/kg in patients aged 12 to 
18 years. Ceftobiprole exposure, expressed in Cmax and AUC0-∞, 
was 20% and 40% below that of adults for patients under 12 

dialysis session is 68% and average dialysis clearance is 7.91 
l/h [16].

A population pharmacokinetic (PK) study assessing the 
need for dose adjustment, demonstrated that kidney function 
expressed in the form of creatinine clearance was the only pa-
tient characteristic s with impact on ceftobiprole PK [17].

These data justify use of conventional doses in patients 
who present with mild kidney failure (CrCl between 50 and 
80 ml/min), but recommending the administration of 500 mg 
every 12 hours via intravenous perfusion for a period of 2 
hours when kidney failure is moderate (CrCl 30 - <50 ml/min), 
and reducing the dose 250 mg administered every 12 hours 
for a period of 2 h for patients with severe kidney failure (CrCl 
<30 ml/min). In the event that intermittent dialysis is needed, 
the recommended dose is 250 mg administered once every 24 
hours [5].

Critically ill patients. The impact on the pharmacokinet-
ic parameters of ceftobiprole on the presence of hyperdynamic 
circulation characterised by elevated creatinine clearance, typ-
ical of some critically ill patients, has been assessed in a multi-
center, open-label, parallel-group, non-randomized study [18]. 
Thirty-three adult subjects hospitalised in the Intensive Care 
Unit were evaluated, who received 1000 mg of ceftobiprole as 
a 4-h perfusion. Systemic clearance of ceftobiprole was signif-
icantly higher in patients with creatinine clearance above 150 

Cmax 
(mg/l)

AUC0-last  
(mg-h/L)

t½ 
(h)

VSS  
(L)

CLT  
(L/h)

CLR  
(L/h)

U  
(%)

Normal 
CrCl>80 ml/min

20.6 ± 2.0 52.4 ± 6.9 3.4 ± 0.3 15.8 ± 1.8 4.8 ± 0.6 4.3 ± 0.5 91.6 ± 6.5

Mild 
(CrCl 50-80 ml/min)

20.1 ± 1.4 72.7 ± 13.9 4.7 ± 0.8 18 ± 0.7 3.4 ± 0.7 2.4 ± 0.6 71.1 ± 7.3

Moderate 
(CrCl 30-50 ml/min)

24.4 ± 1.65 139 ± 15.7 6.8 ± 1.1 14.2 ± 0.8 1.6 ± 0.2 0.8 ± 0.2 51.9 ± 9.9

Severe 
(CrCl <30 ml/min)

22.8 ± 3.4 174 ± 44.5 11.1 ± 1.9 16.9 ± 2.39 1.2 ± 0.3 0.4 ± 0.2 31.5 ± 9.6

Table 2	� Ceftobiprole. Pharmacokinetic parameters (mean ± standard deviation) in patients with kidney 
failure [14, 16]

Degree of kidney failure. Creatinine Clearance (CrCl ml/min). Dose: 250 mg IV, in 30 minutes.

Dialysis. Dose: 250 mg IV, in 120 minutes.

Cmax: maximum plasma concentration; AUC0-last: area under the curve between zero and last plasma concentration; t½: excretion half-life; Vss: volume of 
distribution in state of equilibrium; Clr: kidney clearance; Clt: total clearance; U: percentage of drug actively excreted by urine.

Cmax 
(mg/l)

AUC0-last  
(mg-h/L)

t½ 
(h)

VSS  
(L)

CLT  
(L/h)

CLR  
(L/h)

U  
(%)

Healthy subjects 11.1 ± 1.7 44.3 ± 7.1 3.0 ± 0.4 24.4 ± 3.6 5.6 ± 0.7 5.1 ± 0.8 88.6 ± 4.06

Pre-dialysis 13.3 ± 2.3 118 ± 8.73 20.7 ± 1.83 52.5 ± 5.2 1.7 ± 0.10 N/A N/A

Post-dialysis 21.1 ± 14.7 249 ± 49.0 20.5 ± 5.33 23.9 ± 5.1 0.8 ± 0.2 N/A N/A
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er proportion (<20%) and its volume of distribution indicates 
that the drug remains in accessible areas, characteristics which 
require one to consider the necessity of using higher than rec-
ommended doses according to the patient’s kidney function, 
without a specific amount being needed.

Liver failure. The pharmacokinetics of ceftobiprole in pa-
tients with liver failure has not been established. Since cef-
tobiprole endures minimal liver metabolism and is essentially 
excreted unaltered in the urine, liver failure is not expected to 
affect ceftobiprole clearance.

Elderly patients. Population Pharmacokinetic data has 
demonstrated that age as an independent parameter has no 
effect on the pharmacokinetics of ceftobiprole. Dose adjust-
ment is not believed to be required in elderly patients with nor-
mal kidney function.

Gender. Systemic exposure to ceftobiprole was higher 
in women than in men; 21% for Cmax and 15% for AUC in 
one study, and 32% and 21%, respectively, in another study. 
However, the parameter of % T > MIC was similar in both sex-
es. Therefore, dose adjustment is not believed to be necessary 
based on gender [16].

Race. Pharmacokinetic population assays (including 
groups of Caucasians, black patients, and others) and a specific 
pharmacokinetics study on healthy Japanese subjects showed 
that race had no effect on the pharmacokinetics of ceftobipro-
le. Therefore, dose adjustment is not believed to be necessary 
based on race [16].

PHARMACOKINETICS/PHARMACODYNAMICS

For beta-lactam antibiotics, the concentration exposure 
time above the MIC value (T>MIC) is the pharmacokinetic/
pharmacodynamic index (PK/PD) shown to be most related to 
therapeutic efficacy [21], hence it is the parameter evaluated 
when establishing the dose to be used for a drug in this group 
[22-23].

years old and those aged 12-18 years, respectively. When the 
dose was adjusted by body weight, the volume of distribution 
and total clearance decreased in relation to increased age, 
while kidney clearance and excretion half-life remained 
unchanged. The lowest detected exposure in children aged 12 
to 18 years should be considered when establishing the most 
appropriate dosing regimen. However, in this age sub-group, 
in the PK/PD study, the ceftobiprole concentration remained 
higher than the MIC of 4 mg/l for 66.5-75.3% of the 8-hour 
dosing interval and the drug was also well tolerated [19].

Obese patients. A pharmacokinetic study was conducted 
in 13 morbidly obese adult patients (BMI >40 kg/m2) admin-
istered a single 500-mg dose of ceftobiprole in 2-hours and 
compared to PK in subjects who were not obese [20]. A lower 
Cmax was reported in obese patients (21.4 ± 3.0 versus 30.2 
± 4.3 mg/l), lower AUC0-∞ (91.0 ± 11.7 vs. 110 ± 20.1 mg h/l), 
higher volume of distribution (27.2 ± 3.9 vs. 21.6 ± 5.1 l), and 
higher total clearance (5.6 ± 0.7 vs. 4.7 ± 0.7), although with 
similar half-life values (3.4 ± 0.3 vs. 3.2 ± 0.5). Despite these 
changes in pharmacokinetic parameters, the plasma concen-
tration of ceftobiprole not bound to proteins remained above 
an MIC of 4 mg/l for 76.6 and 79.7% of the 8-hour interval, 
respectively, for both obese and non-obese subjects. There-
fore, although in obese subjects the volume of distribution 
and clearance are greater and the AUC lower, the therapeutic 
objective is reached in a manner similar with the convention-
al dose, thus a dose adjustment is not needed in this type of 
patient.

Other situations

Other external clearance techniques. No studies have 
reported on the effect of different external clearance tech-
niques, hemofiltration, etc. on the pharmacokinetic behaviour 
of ceftobiprole. However, it should be considered that it has a 
molecular weight of 534.56 g/mol, binds to proteins in low-

Cmax 
(mg/l)

AUC0-last  
(mg-h/L)

t½ 
(h)

VSS  
(L)

CLT  
(L/h)

F 
(%)

Reduceda 
CrCl 50-79 ml/min (N=5)

51.6 ± 11.2 405 ± 93.2 4.5 ± 1.0 23.7 ± 6.6 3.8 ± 0.6 19.1 ± 4.4

Normalb 
CrCl 80-150 ml/min (N= 20)

37.8 ± 7.3 269 ± 116 3.8 ± 1.6 23.1 ± 6.3 5.2 ± 1.2 20.5 ± 7.3

Elevatedb 
CrCl >150 ml/min. (N= 6)

27.6 ± 7.3 180 ± 75.3 3.8 ± 1.2 29.4 ± 7.5 7.4 ± 1.5 21.6 ± 3.5

Table 3	� Ceftobiprole. Pharmacokinetic parameters (mean ± standard deviation) in patients with 
elevated creatinine clearance (CrCl) [18]

N: number of subjects. Cmax: maximum plasma concentration; AUC0-last: area under the curve between zero and last plasma concentration; t½: excretion half-
life; Vss: volume of distribution at steady state; Clt: total clearance; F: percentage of binding to plasma proteins.
aCeftobiprole 1000 mg administered in 4 h. of infusion every 12 h.
bCeftobiprole 1000 mg administered in 4 h. of infusion every 8 h.
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pital-acquired pneumonia (HAP) represents more than 25% of 
all infections in the ICU; hospital stays and health costs are 
very high, with a mortality rate between 27% and 50% [6]. 
The microbiological diagnosis is generally difficult to establish, 
including when complex and invasive diagnostic methods are 
used. In fact, microbiological confirmation is achieved in less 
than half of the cases and the initial antibiotic regimen must 
be empirically chosen to prevent delays in establishing an ap-
propriate treatment, which is associated with elevated mortal-
ity [7–10].

Streptococcus pneumoniae (pneumococcus) continues to 
be the most common cause of CAP in all patient treatment 
settings (outpatient, hospitalized and patients admitted into 
intensive care units), age groups, and regardless of the pa-
tient’s comorbidities [11].

However, it is reported that approximately 6% of CAP is 
caused by antibiotic-resistant pathogens, with Pseudomonas 
aeruginosa and methicillin-resistant Staphylococcus aureus 
(MRSA) being the most common [12]. 

In cases of pneumonia due to influenza virus, pneumo-
coccus is the most commonly identified pathogen in patients 
with bacterial co-infection. However, other pathogens such as 
S. aureus (methicillin-susceptible or resistant), Haemophilus 
influenzae and non-fermenting Gram-negative bacilli such as 
P. aeruginosa have also been reported. In patients with severe 
CAP, P. aeruginosa has been identified in 8.3% of patients, 
with a mortality rate of up to 100% [9, 13]

In HAP, the most common infecting bacteria are mem-
bers of the Enterobacteriaceae family (such as Klebsiella spp., 
Enterobacter spp., Serratia spp.), S. aureus, P. aeruginosa, and 
Acinetobacter baumannii, the majority of these microorgan-
isms being multi-drug resistant, highlighting their importance 
in the current challenge of antibiotic resistance [14]. 

Ceftobiprole, a fifth-generation (last generation) extend-
ed-spectrum cephalosporin, shows potent in vitro activity 
against several Gram-positive pathogens, including methi-

ABSTRACT 

Ceftobiprole is a fifth-generation cephalosporin with 
potent antimicrobial activity against Gram positive and 
Gram-negative bacteria. It has been approved in major Eu-
ropean countries for the treatment of community-acquired 
pneumonia (CAP) and hospital-acquired pneumonia (HAP), ex-
cluding ventilator-associated pneumonia (VAP). Ceftobiprole is 
currently in a phase 3 clinical program for registration in the 
U.S. In 2015, it was designated as an infectious disease prod-
uct qualified for the treatment of lung and skin infections by 
the FDA. The efficacy of ceftobiprole in pneumonia has been 
demonstrated in two-phase III clinical trials conducted in pa-
tients with CAP and HAP. The recommended dose in the adult 
with pneumonia is 500 mg every 8 h infused in 2 h; in case of 
renal failure, the regimen of administration must be adjusted 
according to the patient’s renal function. It is not necessary to 
adjust the dose according to gender, age, body weight or liver 
failure. In case of hyperfiltration, an extension to 4 h infusion 
of the 500mg TID is required.

INTRODUCTION

Pneumonia is a serious health problem and a significant 
cause of morbidity and mortality around the world despite ad-
vances in clinical treatment and antibiotic therapy [1]. Com-
munity-acquired pneumonia (CAP) is associated with elevated 
health costs and is a common cause of emergency care and 
hospital admissions, especially in elderly patients and those 
with multiple comorbidities, whose mortality rate (which is ap-
proximately 10%) may reach 40% in cases of severe CAP that 
requires treatment in the intensive care unit (ICU) [2–5]. Hos-
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for adding linezolid. Primary endpoint was the clinical cure 
rate at the TOC visit on the intent-to-treat (ITT) and clinically 
evaluable (CE) population. The secondary efficacy criteria were 
microbiological eradication rate at TOC visit, the rate of clinical 
recovery according to the baseline PSI in ITT and CE popula-
tions, and specific mortality due to pneumonia after 30 days in 
ITT and CE populations. The pre-defined non-inferiority margin 
of 10% (95% CI) was set for all endpoints.

The study demonstrated that ceftobiprole (500 mg/8 h in-
fused in 2 h) was not inferior to ceftriaxone (2 g/24 h), whether 
as monotherapy or combined with linezolid (600 mg/12 h). No 
difference was found in the overall clinical and microbiological 
analyses, as well as in predefined high-risk subgroups or other 
subgroups of interest (including those treated with antistaph-
ylococcal agents). For all 469 clinically evaluable patients, the 
recovery rates were 86.6% versus 87.4%, respectively; in the 
intent-to-treat (IIT) analysis of 638 patients with CAP, the re-
covery rate was 76% versus 79%, respectively [17] (figure 1).

For the secondary criterion of microbiological eradication, 
non-inferiority between ceftobiprole and the comparator was 
established. Specific mortality due to pneumonia in the first 
30 days was very low, both for the ceftobiprole group and the 
ceftriaxone ± linezolid (1 versus 3 patients in the ITT popula-
tion and 0 versus 2 patients in the CE population).

Clinical trial on HAP. Similar to the first study, the sec-
ond was a phase-III , multi-national, randomised, double-blind 
study that compared ceftobiprole against the combination of 
ceftazidime plus linezolid in 781 adults with HAP (defined as 
a pneumonia arising after >72 h of hospitalization or stay in a 

cillin-susceptible S. aureus (MSSA), MRSA with reduced sus-
ceptibility to linezolid, daptomycin or vancomycin, methicil-
lin-resistant coagulase-negative staphylococci (MR-CoNS), 
penicillin- and ceftriaxone-resistant S. pneumoniae, along 
with in vitro activity Gram-negative pathogens including P. 
aeruginosa and non-extended-spectrum beta-lactamases (ES-
BL)-producing Enterobacteriaceae [15] (table 1). Ceftobipro-
le has shown to have a time-dependent bactericidal activity, 
as expected by this class of molecules. It exerts its action by 
blocking the transpeptidase activity in penicillin-binding pro-
teins (PBP) both in Gram-positive and Gram-negative patho-
gens. As a result, peptidoglycan synthesis decreases and the 
bacteria die due to the osmotic effects or by autolytic enzyme 
digestion [16]. 

CLINICAL EFFICACY IN PATIENTS WITH 
PNEUMONIA

The safety and efficacy of ceftobiprole medocaril has been 
investigated in two phase-III clinical trials in patients with CAP 
and HAP [17, 18].

Clinical trial on CAP. This was a multi-centre, dou-
ble-blind, randomised study on 638 patients with CAP who re-
quired hospitalization, ceftobiprole (500 mg/8h) was compared 
to ceftriaxone (2g/day) with or without linezolid (if suspect-
ed MRSA infection, 600 mg/12h). Linezolid was administered 
in patients with suspected MRSA or ceftriaxone-resistant S. 
pneumoniae. Patients were stratified according to severity 
measured by the Pneumonia Severity Index (PSI) and by need 

ACTIVE

Gram-positive bacteria

Streptococcus pneumoniae (including the strains resistant to benzylpenicillin and ceftriaxone)

Staphylococcus aureus

Methicillin-resistant Staphylococcus aureus

Gram-negative bacteria

Haemophilus influenzae (including clinical isolates resistant to ampicillin)

Pseudomonas aeruginosa 

Escherichia coli

Klebsiella pneumoniae

Proteus mirabilis Non-extended-spectrum beta-lactamase (ESBL)-producing

INACTIVE

Strains of Enterobacteriaceae that express Amber class A beta lactamases, especially TEM, SHV and CTX-M types, as well as KPC-type carbapenemases; it is also 
inactive against Amber class B, C (high levels of expression) and D, particularly the ESBL variants and OXA-48 carbapenemases.

Strains of beta-lactamase-producing Pseudomonas aeruginosa from classes A (PSE-1), B (IMP-1, VIM-1, VIM-2) and D (OXA-10).

Strains of beta-lactamase-producing Acinetobacter spp. from classes A (VEB-1), B (IMP-1, IMP-4) and D (OXA-25, OXA-26)

Table 1	� Ceftobiprole’s antibiotic activity
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of 15% for the 95% CIs. The secondary criteria were microbio-
logical eradication at the TOC visit in ITT and microbiologically 
evaluable populations with a valid pathogen at baseline, 30-
day all-cause mortality in the ITT population, as well as safety 
and tolerability.

For the primary efficacy criteria, the study demonstrated 
that treatment with ceftobiprole monotherapy (500 mg/8 h 
infused in 2 h) was non-inferior to a combined treatment that 
included ceftazidime (2 g/8 h) plus linezolid (600 mg/12 h) for 
patients with HAP, excluding patients with VAP. In the CE pop-
ulation, 86.9% of patients with HAP (excluding patients with 
VAP) in the ceftobiprole group demonstrated early improve-
ment (4 days after beginning therapy); compared to 78.4% 
in the ceftazidime plus linezolid group (difference 8.5 [CI of 
95%, 0.9–16.1]). A major numerical difference was observed 
in the subgroup of patients with microbiological evidence of 
MRSA infection (94.7% in the ceftobiprole group vs. 52.6% in 
the ceftazidime group plus linezolid (difference, 42.1 [CI 95%, 
17.5–66.7]). For the secondary efficacy criteria, the microbio-

long-term care unit). The inclusion criteria were: clinical signs 
and symptoms of pneumonia (at least two including purulent 
respiratory secretion, tachypnoea, or hypoxemia); fever or leu-
kocytosis/leukopenia; new or persistent radiographic infiltrates; 
and an APACHE II score of 8-25. The exclusion criteria were: 
severe kidney or liver failure; evidence of infection due to cef-
tobiprole or ceftazidime-resistant pathogens; clinical conditions 
that could interfere with the efficacy evaluation (for example, 
sustained shock, active tuberculosis, pulmonary abscess, and 
post-obstructive pneumonia); and systemic antibiotic treatment 
for >24 h in the 48 h prior to inclusion. Patients were stratified 
for treatment according to presence of VAP (pneumonia aris-
ing after >48 h after the start of mechanical ventilation) and 
APACHE II score (8–19/20–25); VAP patients were stratified ac-
cording to length of mechanical ventilation (</≥5 days).

The primary efficacy endpoint was the clinical cure rate 
at the TOC visit (7 to 14 days after the last dose of the study 
drug or early termination) in the ITT and clinically evaluable 
(CE) populations; non-inferiority was defined using a margin 

Figure 1	 �CAP: Percentage of clinical efficacy in the population by intention to treat (A) and in clinically 
evaluable population (B)

(A) (B)

Figure 2	 �HAP: Percentage of patients with clinical cure visit of cure test in the population by intention to treat 
(A) and in clinically evaluable population (B)

(A) (B)

Differences between groups -2.0% (-10.0–6.1) 1.6% (-6.9–10.0) -18.2% (-36.4 to -0.0) 
IC 95%

Differences between groups -2.9% (-10.0–4.1) 0.8% (-7.3–8.8) -13.7% (-26.0 to -1.5) 
IC 95%
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VAP was different from patients without VAP, which may be 
attributed to increased cardiac output, augmented glomerular 
filtration rate, and increased volume of distribution associated 
with critical illness. For this reason, it is unlikely that ceftobi-
prole will meet the desired PD objectives when the PK param-
eters are altered. Indeed, for patients hospitalized in the ICU 
with creatinine clearance (CrCl) >150 ml/min, extending the 
ceftobiprole infusion time to 4 h contributes to keep plasma 
levels above the minimum inhibitory concentration (MIC) (4 
mg/L). As such, for patients with increased kidney function (Cr-
Cl>150 ml/min), increasing the duration of ceftobiprole infu-
sion is recommended (500 mg for 4 h/8 h), according to linear 
PK and low protein binding [19].

The inferior outcome of ceftobiprole in VAP may have 
been the result of suboptimal concentrations of ceftobiprole 
at the infection site as a result of the change in volume of 
distribution due to mechanical ventilation capillary filtration. 

Ceftobiprole has so far demonstrated a good safety profile 
in preliminary studies, with a tolerance similar to that of com-
parators. The most commonly observed adverse events with 
ceftobiprole include headache and gastrointestinal disorders. 
Ceftobiprole is the first cephalosporin monotherapy that has 
been approved in Europe for the treatment of CAP and HAP, ex-
cluding VAP. Ceftobiprole is not approved by the Food and Drug 
Administration (FDA); however in 2015 it was designated as an 
infectious disease product qualified for the treatment of lung 
and skin infections by the FDA [20]. There is an ongoing phase III 
study at this time to compare the safety and efficacy of ceftobi-
prole medocaril versus vancomycin plus aztreonam in the treat-
ment of patients with acute bacterial skin and skin structure 
infections. BARDA program https://clinicaltrials.gov/ct2/show/
NCT03137173?term=Ceftobiprole&draw=3&rank=11 

logical eradication rates at the completion of treatment (CT) 
visit in patients with HAP (excluding VAP) were similar in the 
ceftobiprole and ceftazidime/linezolid groups in the ITT (49% 
versus 54%; difference 5.0; CI 95%: 15.3–5.3) and microbio-
logically evaluable groups (63% vs. 68%; difference -4.6; CI 
95%: -16.7–7.6) (figure 2A). In addition, clinical recovery and 
rates of microbiological eradication of pathogens in patients 
with HAP (excluding VAP) were similar for Gram-positive and 
the majority of Gram-negative microorganisms.

In the overall population, the recovery rates in clinically 
evaluable patients for ceftobiprole compared to ceftazidime/
linezolid were 69.3% vs. 71.3%, respectively. Ceftobiprole nonin-
feriority was not demonstrated in the subgroup of patients with 
VAP patients with recovery rates in the clinically evaluable cases 
of VAP of 37.7% vs. 55.9% [18], respectively (figure 2B). 

Interestingly, in patients with HAP requiring mechanical 
ventilation for less than 48 h, thus not defined as VAP, clinical 
outcomes favoured ceftobiprole, suggesting that mechanical 
ventilation itself may not be associated with poor outcomes, 
whereby ceftobiprole may be administered in patients with 
HAP requiring mechanical ventilation. There are different ex-
planations for ceftobiprole outcomes observed in the VAP 
subgroup of patients: the small sample size and considerable 
heterogeneity of baseline clinical characteristics in the VAP 
subgroup may have contributed to the difference in outcomes 
(figure 3) [19]. 

Furthermore, out of the 16 (62.5%) patients ≤45 years 
with VAP and cranial trauma who were randomized into the 
ceftobiprole group, 12 (17.6%) were characterized as treat-
ment failures compared to two out of four assigned to the cef-
tazidime/linezolid group. 

The pharmacokinetics (PK) of ceftobiprole in patients with 

Figure 3	 �Clinical characteristics between groups: HAP (excluding VAP) ceftobiprole, 
HAP (excluding VAP) ceftazidime/linezolid, VAP ceftobiprole, VAP 
ceftazidima/linezolid
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groups. The volume of distribution and total clearance of cefto-
biprole were 25.9 and 19.1% higher, respectively, in those who 
were severely obese compared to non-obese individuals; exposure 
to ceftobiprole was lower in adults who were severely obese than 
in those who were not. Plasma concentrations of unbound cef-
tobiprole remained above the MIC objective of 4 mg/L (fT >MIC) 
for 76.6 and 79.7% of an 8 h. dose interval in severely obese and 
non-obese individuals, respectively. Although the volume of dis-
tribution and total clearance were higher and exposure was lower 
in adults with severe obesity compared to non-obese individuals 
after a ceftobiprole infusion, the % fT >MIC was similar in both 
groups, which indicates that it’s not necessary to adjust the dose 
of ceftobiprole in patients with severe obesity [24].

TOLERABILITY 

With respect to the tolerability of ceftobiprole, one po-
tential benefit of kidney excretion is that it may limit exposure 
to antibiotics in the intestine, although to date there are no 
studies that specifically address this topic. Only one study pub-
lished in 2010 investigated the effect of the administration of 
ceftobiprole on the normal intestinal microflora of 12 healthy 
subjects aged 20 to 31 years who received ceftobiprole 500 
mg via intravenous infusion every 8 h for 7 days. This study 
showed that ceftobiprole achieves low levels of intestinal ex-
posure, with only minor effects on the intestinal microbiota. 
In fact, no measurable concentrations of ceftobiprole were 
detected in faeces following intravenous administration in 
healthy volunteers and no Clostridium difficile strains or toxins 
were found. Also, one study on mice showed that ceftobiprole 
did not promote the growth of C. difficile in faecal content 
and was not associated with toxin production. 

Ceftobiprole in CAP and HAP (excluding VAP). Due 
to its safety profile and good antibiotic activity against an 
extended spectrum of pathogens in CAP, especially penicillin- 
and ceftriaxone-resistant S. pneumoniae, as well as S. aureus 
especially MRSA, ceftobiprole may be a very good therapeutic 
option for patients with risk factors for infection caused by 
these pathogens. Also, ceftobiprole appears to be very prom-
ising in patients with CAP due to influenza with suspected or 
confirmed co-infection with S. pneumoniae or S. aureus (MS-
SA or MRSA). Furthermore, a post hoc retrospective analysis of 
the subgroups of high-risk patients with CAP (n= 398) (PORT 
risk score >III, age >75 years, sepsis, COPD, bacteraemia, need 
for ICU) and HAP (n=307) (need for mechanical ventilation, 
APACHE score >15, age >75 years, bacteraemia, treatment in 
ICU, COPD, >10 comorbidities) from both of the aforemen-
tioned phase-III clinical trials has evaluated early clinical re-
sponse (3rd day in CAP and 4th day in HAP) for ceftobiprole 
versus the active comparator regimes, yielding overall similar 
results, with a trend towards better outcomes in the cefto-
biprole treated arm (numerical superiority assessed by 10% 
difference or CI not crossing 0). For this reason, high-risk pa-
tients with CAP and HAP (excluding VAP) may show earlier 
improvement upon ceftobiprole administration [25]. Case se-
ries presented at ECCMID 2019 on 57 patients with important 

DOSING ROUTES IN PNEUMONIA

Ceftobiprole should be administered at a dose of 500 mg 
every 8 h, infused over 2 h, in patients with normal kidney 
function. Ceftobiprole should be reconstituted with 10 ml ster-
ile saline or 5% dextrose. It is further diluted in 250 ml of 0.9% 
sodium chloride, 5% dextrose, or lactated ringers solution prior 
to intravenous infusion. 

Dosing in Special Patient Populations

• Patients with Kidney Failure: it is recommended to adjust 
the dose of ceftobiprole in patients with moderate to severe 
kidney failure. For patients with moderate deterioration (CrCl 
30 to <50 ml/min), the recommended dose is 500 mg adminis-
tered as intravenous infusion for 2 h every 12 h, while for those 
with severe deterioration (CrCl <30 ml/min), the recommended 
dose is 250 mg administered as intravenous infusion for 2 h 
every 12 h. For patients with terminal stage kidney disease, the 
recommended dose is 250 mg once every 24 h, regardless of 
whether or not they are undergoing haemodialysis.

• Treatment of Critically Ill Patients: antibiotics are among 
the most important and commonly prescribed medicines in 
the treatment of critically ill patients and β-lactams are the 
most widely used class of antibiotic. Pathophysiological fac-
tors in critically ill patients lead to altered pharmacokinetics 
and pharmacodynamics of β-lactams. In critically ill patients, 
capillary leak and oedema, fluid therapy, pleural effusion, as-
cites, permanent post-surgical drainage and hypo-albumi-
naemia may all increase the volume of distribution and cause 
dilution of antibiotics in plasma and extracellular fluids. Some 
pathophysiological factors may also improve (hyperdynamic 
condition in early stage sepsis, the use of haemodynamical-
ly active drugs) or reduce (kidney failure, bedridden patients) 
the concentrations of the antibiotic in plasma and extracellu-
lar fluid (with implications for MIC over time), prompting high 
intra and inter-patient variability and promoting the risk of 
antibiotic overdose. Extra-corporeal support techniques also 
contribute to the variability of antibiotic concentration [19, 
21]. There are very few studies that have investigated β-lactam 
PK/PD issues in critically ill patients with pneumonia. Rodvolt 
et al. [22] conducted a prospective, observational, pre-clinical 
murine model of pneumonia due to MRSA and a clinical study 
with 24 healthy volunteers who received ceftobiprole 500 mg 
over 2 h, every 8 h. Its conclusions were that for critically ill 
patients, particularly in the ICU, higher doses or longer infusion 
times (to prolong T>MIC), or both, will be required to guaran-
tee adequate achievement of objectives for 90% of critically ill 
patients with pneumonia due to MRSA. 

• Obese Patients: the physiological changes that obese patients 
present may influence the pharmacokinetics of antibiotics. One 
study compared the pharmacokinetics of a single intravenous in-
fusion of ceftobiprole 500 mg for 2 h in obese adults [body mass 
index (BMI)] [40 kg/m2] and those who were not obese (BMI 18-
30 kg/m2)[24]. The average BMI was 45.5 kg/m2 in the group with 
severe obesity (n = 12) compared to 24.0 kg/m2 in the non-obese 
group (n = 13); other baseline characteristics were similar in both 
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Lastly, considering that ceftobiprole shows potent in vit-
ro activity against the pathogens most commonly associated 
with HAP, above all S. aureus, non-ESBL Enterobacteriaceae, 
and P. aeruginosa, it has the potential to simplify empirical 
combination treatment with two antibiotics in a monotherapy 
regimen for HAP (excluding VAP).

REGISTRATIONS

Ceftobiprole medocaril has been approved in major Eu-
ropean countries for the treatment of CAP and HAP, exclud-
ing VAP [26, 27]. Ceftobiprole is currently in a phase 3 clinical 
program for registration in the U.S. In 2015 it was designated 
as an infectious disease product qualified for the treatment of 
lung and skin infections by the FDA [20]. This year ceftobiprole 
has been launched in Argentina [28]. 

CONCLUSIONS

One of the main challenges in the treatment of pneu-
monia (CAP and HAP) is overcoming the problems of re-
sistance, which have become so important and common in 
recent years. Ceftobiproles potent activity as a new-genera-
tion cephalosporin against broad spectrum of Gram-positive 
and Gram-negative bacteria has been demonstrated in two 
clinical trials, one on CAP and the other on HAP (excluding 
ventilation-associated pneumonia). Ceftobiprole is approved 
in major European countries as therapy for CAP and HAP 
(excluding VAP), and is designated as an infectious disease 
product qualified for the treatment of lung and skin infec-
tions by the FDA.

Ceftobiprole may be used in patients with CAP with sus-
pected or confirmed Staphylococcus aureus (MSSA or MRSA) 
as is the case with pneumonia due to the influenza virus in 
which S. pneumoniae may also be involved, and in patients 
with HAP to cover S. aureus, susceptible Pseudomonas aerugi-
nosa and non-ESBL Enterobacteriaceae.

Extended-spectrum coverage with ceftobiprole mono-
therapy may simplify empirical treatment in relation to com-
bined therapies against MRSA. 
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1) The in vitro synergy between beta-lactams and amino-
glycosides has not been translated into a clinical benefit prob-
ably due to the unacceptable risk of nephrotoxicity [5] and it is 
no longer recommended [6]. 

2) Vancomycin is associated with a higher failure rate than 
beta-lactams against methicillin-susceptible S. aureus (MSSA), 
even when vancomycin is given empirically and switched to a 
beta-lactam within 72h after the first blood culture [7]. 

3) For the treatment of methicillin-resistant S. aureus 
(MRSA) bacteremia, vancomycin should be dosed to achieve 
an AUC/MIC≥400. To obtain this goal, a minimum serum con-
centration of 15-20 mg/L is necessary, and the recommend-
ed dose is 15-20 mg/kg/12h. In critically ill patients, a loading 
dose of 30-35 mg/kg is suggested to early achieve the phar-
macodynamic goal [8]. 

4) Vancomycin MIC of 2 mg/L has been associated with a 
higher mortality rate in MRSA bacteremia probably due to the 
low probability to attain the pharmacodynamic target [9, 10], 
and the higher prevalence of hetero-resistance to vancomycin 
in those strains with a MIC≥2 mg/L [11]. 

5) The therapeutic range of vancomycin (serum concen-
tration between 15 and 20 mg/L) overlaps with the nephrotox-
ic range [12]. 

6) A randomized clinical trial in S. aureus bacteremia com-
paring daptomycin vs. anti-staphylococcal penicillin (for MS-
SA) or vancomycin (for MRSA) plus gentamicin for the first 4 
days showed that daptomycin is a suitable alternative but still 
associated with a high failure rate for high-inoculum infec-
tions like left-sided endocarditis because of a risk of selecting 
strains with reduced susceptibility [13]. In addition, a loss of 
daptomycin susceptibility in the absence of any administered 
antibiotic has been recently observed in an experimental mod-
el of prosthetic joint infection, probably as a result of in vivo 
selection pressure from cationic host peptides [14, 15].

In the last guidelines from the Infectious Diseases Society 
of America (IDSA) [6], vancomycin is still the first line choice 

ABSTRACT

Ceftobiprole is a new cephalosporin with an extended 
spectrum activity against the majority of microorganisms iso-
lated in bacteremia including methicillin-susceptible (MSSA) 
and -resistant S. aureus (MRSA). This antibiotic has demon-
strated a potent activity against MRSA in animal models of 
endocarditis in monotherapy but particularly in combination 
with daptomycin, suggesting that this combination could be a 
future option to improve the outcome of staphylococcal end-
ovascular infections. In addition, the extended-spectrum cef-
tobiprole activity, including coagulase-negative staphylococci, 
Enterococcus faecalis, Enterobacteriaceae and Pseudomonas 
aeruginosa represents an advantage for use as empirical ther-
apy in bacteremia potentially caused by a broad spectrum of 
microorganisms, such as in catheter-related bacteremia. 

INTRODUCTION 

Staphylococcus aureus is one of the leading causes of 
bloodstream infections [1] and in the recent years the most 
common microorganism causing endocarditis [2]. Despite ther-
apeutic advances, a recent study on 3395 consecutive adult 
patients with S. aureus bacteremia (SAB) from 20 care centers 
in Europe and the United States reported a crude 14 and 90-
day mortality rate of 14.6% and 29.2%, respectively [3]. Source 
control (catheter removal, abscess drainage) and early admin-
istration of an adequate antibiotic treatment are factors inde-
pendently associated with success [4], however, randomized 
control trials to determine the best antibiotic treatment in SAB 
are scarce and new data mainly arise from observational studies. 
The major advances can be summarized as follows: 
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(CAP), hospital (HAP) acquired pneumonia, and for compli-
cated skin and soft tissue infections (cSSTI) [27-30]. A pooled 
analysis of these 4 trials assessed the efficacy of ceftobiprole 
and comparators against staphylococcal bacteraemia in cSSTI, 
CAP, and HAP. Comparators included vancomycin (cSSTI), van-
comycin plus ceftadizime (cSSTI), ceftriaxone (with linezolid 
in cases of suspected MRSA) (CAP) and ceftazidime plus lin-
ezolid (HAP) (Rello J, Rahav, Scheeren T, Saulay M, Engelhardt 
M, Welte T. Pooled analysis of clinical cure and mortality with 
ceftobiprole medocaril versus comparators in staphylococcal 
bacteremia in complicated skin infections, community- and 
hospital-acquired pneumonia. ECCMID 2016: O-318). The out-
comes showed that clinical responses were similar with cefto-
biprole and standard-of-care comparators (table 1). In patients 
with MRSA, there was a trend towards improved clinical cure 
rates at test of cure (55.6% vs. 22.2%) and all-cause mortality 
at day 30 (0 vs. 22.2%) with ceftobiprole compared with other 
regimens (table 1). A double-blind, randomised, non-inferiority 
study to compare ceftobiprole (500 mg/8h) and daptomycin (6 
mg/kg/24h) in adult patients with S. aureus bacteraemia, in-
cluding right-sided infective endocarditis, is ongoing (https://
clinicaltrials.gov/ct2/show/NCT03138733).

The high mortality associated with particular pathol-
ogies such as endovascular infections deserves a particular 
attention since several in vitro antibiotic combinations have 
shown synergism but clinical trials to test these new thera-
peutic alternatives are scarce [3]. For instance, beta-lactams 
have shown in vitro synergy with vancomycin against MRSA 
[31-34] and a subsequent clinical trial randomized 60 pa-
tients with MRSA bacteremia to receive vancomycin alone or 
in combination with flucloxacillin for 7 days [35]. The mean 
time to resolution of bacteremia in the combination group 
was 1.94 days compared with 3 days in the vancomycin group 
(P = 0.06). In line with this, ceftobiprole has also demonstrat-
ed in vitro synergism with vancomycin and in a rat model 

but daptomycin is considered an alternative. Recent 
recommendations from Spanish experts support the 
use of high dose daptomycin (8-10 mg/kg/24h), and for 
high-inoculum infections, combination therapy with a 
second active antibiotic [16, 17]. These findings clearly 
point out 1) the need of alternative treatments for S. 
aureus bacteremia and 2) the major efficacy issues of 
beta-lactams over any alternative. 

ACTIVITY OF CEFTOBIPROLE AGAINST 
STAPHYLOCOCCI

Ceftobiprole medocaril is a new cephalosporin with 
in vitro activity against S. aureus and coagulase-negative 
staphylococci (CoNS). In a recent study, 99.5% of 15.426 S. 
aureus isolates were susceptible to ceftobiprole at the EU-
CAST breakpoint of 2 mg/L. The minimum inhibitory con-
centrations of 90% (MIC90) for methicillin susceptible and 
resistant isolates were 0.5 and 2 mg/L, respectively. Against 
CoNS, the ceftobiprole MIC90 was 0.25 and 2 mg/L against 
methicillin susceptible and -resistant isolates, respectively 
[18]. Ceftobiprole’s activity was not affected by vancomycin MIC 
and it remained active against isolates with an elevated vancomy-
cin MIC (2 mg/L). Ceftobiprole has a time-dependent bactericidal 
activity that is optimal at 2 to 8 times the MIC [19]. In the rabbit 
endocarditis model using MRSA strains with a MIC of 2 mg/L, cef-
tobiprole was as effective as vancomycin [20, 21] and even superi-
or to vancomycin, daptomycin and linezolid using the same model 
but a different strain with a ceftobiprole MIC of 4 mg/L [22]. In a 
rat model of endocarditis the efficacy of a continuous infusion 
of ceftobiprole to maintain serum concentrations about 6, 12 or 
25 mg/L was evaluated [23]. The highest concentration sterilized 
100% of the vegetations and the other two >90%, supporting the 
in vitro pharmacodynamic models showing a bactericidal activity 
against MRSA when T>MIC is 100% [24]. In these animal mod-
els, no selection of ceftobiprole resistant strains was detected in 
line with in vitro data showing very low frequency of resistance 
development after single-passage selection [19]. These studies al-
so demonstrated a high stability of ceftobiprole, after 24h expo-
sure to a high inoculum (109 CFU) of a penicillinase-producing S. 
aureus strain, being even more stable than methicillin. This is of 
interest since a high failure rate in high inoculum infections (en-
docarditis) has been observed with cephalosporins like cefazolin 
when the causative strain is producing type A beta-lactamase [25]. 
The activity of ceftobiprole against type A, B, and C beta-lactama-
se producing MSSA has been tested and a slight increase in the 
MIC was documented when comparing standard and high inoc-
ulum of type A, B and C producing MSSA beta-lactamase positive 
strains but the MIC remained ≤2 mg/L in all cases [26]. 

CLINICAL EXPERIENCE WITH CEFTOBIPROLE IN 
BACTERAEMIC PATIENTS

The clinical experience is scarce but there were bacterae-
mic patients within the 4 pivotal phase 3 clinical trials com-
paring ceftobiprole with other alternatives for community 

Outcome Ceftobiprole, n/N (%) Comparator, n/N (%)

Clinical cure rate at test of cure

Any staphylococcal bacteremia

Coagulase-negative staphylococci

S. aureus

   MSSA

   MRSA

22/45 (48.9)

10/22 (45.5)

12/23 (52.2)

4/9 (44.4)

5/9 (55.6)

22/50 (44)

10/22 (45.5)

12/28 (42.9)

7/15 (46.7)

2/9 (22.2)

30-day all cause mortality

Any staphylococcal bacteremia

Coagulase-negative staphylococci

S. aureus

   MSSA

   MRSA

4/45 (8.9)

1/22 (4.5)

3/23 (13)

1/9 (11.1)

0/9

8/50 (16)

2/22 (9.1)

6/28 (21.4)

2/15 (13.3)

2/9 (22.2)

Table 1	� Cure rate at test of cure and 30-day mortality 
of patients with bacteremia in the 4 pivotal 
studies of ceftobiprole and comparators.
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combination with daptomycin has a potent synergistic activi-
ty. Therefore, ceftobiprole should be considered as a potential 
empirical option when MRSA bacteremia is suspected and in 
combination with daptomycin for the treatment of endovas-
cular infections as a primary option or as a salvage therapy. 
In the future, it is necessary to collect more clinical experience 
with this antibiotic and to evaluate the most adequate dosage 
particularly for more severe infections. 
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demonstrated in vitro activity on the majority of Gram-positive 
cocci and aerobic Gram-negative bacilli of clinical relevance. 
On the former, it has heightened bactericidal action and in-
cludes: 1) Staphylococcus spp., both methicillin- and vancomy-
cin-resistant Staphylococcus aureus and coagulase-negative 
staphylococci, 2) Streptococcus spp., including Streptococ-
cus pneumoniae resistant to penicillins and third-generation 
cephalosporins, and 3) Enterococcus faecalis, as it is the first 
and only cephalosporin here with demonstrated activity. With 
regard to Gram-negative bacilli, its spectrum includes the ma-
jority of non-extended spectrum beta-lactamase (ESBL)-pro-
ducing enterobacteria (Escherichia coli, Klebsiella pneumoniae, 
Enterobacter cloacae, Citrobacter freundii, Serratia marc-
escens, Proteus mirabilis), with activity similar to that of ce-
fotaxime and ceftriaxone, and Pseudomonas aeruginosa, with 
similar activities to ceftazidime and cefepime [2]. 

OTHER POSSIBLE MONOTHERAPY INDICATIONS

The unique antibiotic spectrum of ceftobiprole, which for 
the first time combines activity against methicillin-resistant 
Staphylococcus spp. and P. aeruginosa, along with non-ES-
BL-producing enterobacteria, Streptococcus spp and E. faeca-
lis, makes it a very attractive and advantageous monotherapy 
alternative compared to antibiotic combinations commonly 
used for empirical treatment of infections (table 1), which may 
be caused by one or several of the aforementioned microor-
ganisms.

1. Complicated skin and soft tissue infections (cSSTIs)

According to data from a pharmacovigilance study con-
ducted in Europe over the course of 7 years, S. aureus was the 
primary agent in SSTIs (37.5%), of which 22.8% were MRSA. 
This was followed by P. aeruginosa (12%), E. coli (10.8%), and 
Enterococcus spp. (6.1%). Considering the polymicrobial aetiol-
ogy and mechanisms of resistance that these microorganisms 

ABSTRACT

Ceftobiprole is a fifth-generation cephalosporin approved 
for the treatment of adult community-acquired pneumonia 
and non-ventilator associated hospital-acquired pneumonia. 
However, its microbiological and pharmacokinetic profile is 
very attractive as armamentarium for empirical monotherapy 
treatment in other infections too. Among these, the following 
scenarios could be considered complicated skin and soft tissue 
infections, moderate-severe diabetic foot infections without 
bone involvement, vascular-catheter-associated-bloodstream 
infections, and fever without apparent focus in the hospitalized 
patient without septic shock or profound immunosuppression.

Key words: ceftobiprole, skin soft tissue infections, diabetic foot infec-
tions, vascular-catheter-associated-bloodstream infections and fever 
without apparent focus.

INTRODUCTION

Ceftobiprole is a fifth-generation cephalosporin current-
ly approved in major European countries for the treatment of 
adult community-acquired (CAP) and Hospital-acquired pneu-
monia (HAP), excluding ventilator-associated pneumonia (VAP) 
[1]. However, the safety profile of this molecule as demonstrat-
ed in clinical trials, along with its antimicrobial and pharma-
cokinetic profile [2, 3], makes it a very attractive treatment 
option as monotherapy for empirical treatment of infections 
in which many patients could benefit from this potential alter-
native, despite the lack of data from clinical trials and obser-
vational studies.

Ceftobiprole is an extended-spectrum cephalosporin with 
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CAST, which determine the sensitivity of ceftobiprole, are as 
follows: S. aureus ≤2 mg/L, S. pneumoniae ≤0.5 mg/L, and En-
terobacteriacea ≤0.25 mg/L [10]. 

The efficacy and safety of ceftobiprole in cSSTI was also 
assessed in two multi-centre, non-inferiority, phase-III, dou-
ble-blind, and randomised clinical studies with over 1600 
patients [11, 12]. In one study, ceftobiprole (500 mg/12 h. IV) 
(n= 397) was compared to vancomycin (1000 mg/12 h IV) (n= 
387) (1:1 ratio) for the duration of 7-14 days in infections due 
to Gram-positive microorganisms. Approximately 50% of the 
infections were abscesses, 30% wounds (surgical, traumatic 
and burns), and 20% cellulitis. Around 80% of infections were 
caused by S. aureus (1/3 MRSA). The clinical recovery rate was 
similar in clinically evaluable patients (>90%) and in the intent-
to-treat analysis (77%). The same was observed in the rate of 
microbiological eradication (>90%). There were no differences 
in tolerability. The most common side effects of ceftobiprole 
were nausea (14%) and changes in taste (8%) [11]. 

The second study included Gram-positive and Gram-neg-
ative infections. Ceftobiprole (500  mg/8  h IV administered 
over a two-hour infusion) (n= 547) was compared with the 
combination of vancomycin (1000  mg/12  h. IV) and ceftazi-
dime 1000 mg/8 h IV) (n=281) (2:1 ratio). The most common 
infections were: diabetic foot abscesses and infections (30%), 
wounds (surgical, traumatic, and burns), and cellulitis 20%. 
S. aureus was the most common causative microorganism 
(64%, 1/3 MRSA), followed by E. coli (10.7%) and P. aeruginosa 
(6.6%). The clinical recovery rate in clinically evaluable patients 
and in the intent-to-treat was similar (90.5% vs. 90.2% and 
81.9% vs. 80.8%, respectively). There were neither differences 
observed in patients who experienced bacteraemia in infec-
tions with severity criteria (CRP >50  mg/L, fascia or muscle 
involvement, with systemic inflammatory response syndrome 
or Panton-Valentine toxin-producing MRSA infection), nor 
by type of microorganism (Gram-positive 91.8% vs. 90.3%, 

can express, an initial extended-spectrum empirical treatment 
appears as an obvious choice, where ceftobiprole may have 
great potential [4]. 

In this regard, within the vast group of SSTIs, the use of 
ceftobiprole should be considered in a) infections in areas 
with large prevalence of methicillin-resistant Staphylococcus 
aureus (MRSA), which are severe and extensive and may be 
life-threatening, b) elderly patients with significant comorbid-
ities (Child B or C cirrhosis of the liver, haemodialysis) or im-
munosuppression c) manipulated or previously treated chronic 
ulcers with signs of infection, and d) surgical or trauma wound 
infections [5]. 

The factors to bear in mind when selecting empirical treat-
ment for these infections are the following: severity, history 
of infection/colonisation by resistant microorganisms, previous 
antibiotic treatment and local sensitivity patterns [6]. Recently, 
a prospective, observational Spanish study analysed bacterae-
mia’s associated with pressure ulcers. The microorganisms most 
commonly isolated from blood were the following: S. aureus 
17 (30%), Proteus spp. 16 (28%), Bacteroides spp. 13 (23%), E. 
coli 8 (14%) and P. aeruginosa 4 (7%). In 25% of cases, the in-
fection was polymicrobial. Bacteraemia-related mortality was 
21% and was independently associated with nosocomial origin 
and polymicrobial aetiology [7]. 

Published data on experiences with ceftobiprole in this 
context is already available. In an experimental murine model 
of MRSA and P. aeruginosa infections, ceftobiprole achieved a 
significantly greater reduction in lesion volume and bacterial 
load than linezolid and vancomycin (in MRSA) and cefepime (in 
P. aeruginosa) [8]. 

The concentration of ceftobiprole (free drug) in subcuta-
neous cellular and musculoskeletal tissue, following a dose of 
500  mg IV and determined in vivo by microdialysis, remains 
above 2 mg/L for at least 40% of the 8-hour interval between 
consecutive doses [9]. The cut-off points established by EU-

Table 1	� Possible indications of ceftobiprole 

1. Community-acquired pneumonia, non-ventilator-associated hospital-acquired pneumonia

2. Complicated skin and soft tissue infections

a) Infections in areas with high prevalence of methicillin-resistant S. aureus

- Severe and extensive, which may be life-threatening

- Elderly patient with significant comorbidity (Child B or C cirrhosis of the liver or haemodialysis)

- Immunosuppressed patient 

b) Manipulated or previously treated chronic ulcers with signs of infection 

c) Surgical or traumatic wound infections

3. Moderate or severe diabetic foot infections without bone involvement

4. Infection originating from a vascular catheter

5. Fever with no apparent focus in hospitalised patient without septic shock or severe immunosuppression
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catheters (central and peripheral) in our country [18-20]. How-
ever, in recent years a significant increase in Gram-negative 
bacilli has been reported, most notably P. aeruginosa, E. coli 
and Klebsiella spp., which have been associated to a significant 
degree with solid organ transplant, post-surgery, prior use of 
beta-lactams, prolonged hospital stay (>7-11 days), and more 
than 3 days post-catheter insertion [21, 22]. 

In this context, choosing ceftobiprole as monotherapy 
may replace the usual combinations of a glycopeptide with a 
beta-lactam, preferentially active against P. aeruginosa. Expe-
rience with ceftobiprole in the treatment of bacteraemia, al-
though favourable, is still limited. In the first cSSTI study due 
to Gram-positive cocci, three episodes of staphylococcal bac-
teraemia (2 due to MRSA) treated with ceftobiprole resolved 
without complication [11]. In the other cSSTI study, 13 cases 
of bacteraemia were reported in the ceftobiprole group, 11 of 
which (84.6%) resolved. In the control group, 8 cases of bac-
teraemia were observed with favourable outcome in 62.5% 
(5/8) [12]. In the hospital-acquired pneumonia study, 41 cas-
es of bacteraemia were identified in the ceftobiprole arm and 
45 in the comparator group. The authors do not comment on 
the aetiology or clinical and microbiological outcomes in this 
sub-group [23]. In the community-acquired pneumonia clinical 
trial, several cases of bacteraemia are described with no men-
tion of causal agents. The recovery rate in this subpopulation 
does not differ between treatment groups or in comparison 
to treated cases without bacteraemia (ceftobiprole 6/7, 85.7%, 
comparator 12/14, 85.7%) [24]. Also at this time there is a 
phase III ongoing study in S. aureus bacteremia. The purpose of 
this study is to compare the efficacy and safety of ceftobiprole 
medocaril versus daptomicyn in the treatment of patients with 
complicated S. aureus bacteremia [25].

4. Fever with no apparent focus in hospitalised pa-
tients 

The first point to consider in this patient type is to deter-
mine whether the origin of the fever is infectious, thus evalu-
ating the clinical, biological and imaging data that may suggest 
infection. The second aspect is taking culture samples prior to 
starting treatment. The third decision involves choosing the em-
pirical antibiotic treatment, clouded by a lack of focality [26]. In 
a large number of patients, the origin may be the venous cath-
eter. In any case, one must always consider the most prevalent 
microorganisms as a cause of infection in hospitalised patients 
(S. aureus, coagulase-negative staphylococci, Enterococcus spp., 
and Gram-negative bacteria (enterobacteria and P. aeruginosa) 
which depend on the comorbidity, the invasive diagnostic or 
therapeutic procedures performed, and local epidemiology [27]. 
Furthermore, one must consider the risk of resistance, which is 
closely related to prior use of antibiotics, loss of colonisation im-
munity and colonisation pressure [28]. In patients without sig-
nificant immunosuppression or septic shock, ceftobiprole may 
be used empirically as monotherapy with the goal of addressing 
the possible role of methicillin-resistant Staphylococcus spp., E. 
faecalis, P. aeruginosa and non-ESBL-producing enterobacteria. 

Gram-negative 87.9% vs. 89.7%, respectively). In the ceftobi-
prole group, it is noteworthy that in cases with isolation of P. 
aeruginosa only, failure occurred when the MIC90 was >8 mg/L. 
Tolerability was equivalent, and nausea was the most common 
adverse effect of ceftobiprole [12]. Despite the favourable re-
sults of these studies, the FDA (Food and Drug Administration) 
and the EMA (European Medicines Agency) have not approved 
the use of ceftobiprole in cSSTIs due to a lack of inspections 
and audits in one-third of patients [13, 14]. For this reason it 
is being carried out a new phase 3 clinical trial in the treat-
ment of patients with acute bacterial skin and skin structure 
infections, to establish the efficacy and safety of ceftobiprole 
compared with vancomycin plus aztreonam [15]. 

2. Moderate or severe diabetic foot infections without 
bone involvement

In Spain, the aetiology of diabetic foot infections has been 
well documented in recent studies. S. aureus (>30% MRSA) 
remains the most common agent, followed by Gram-negative 
bacilli (enterobacteria and P. aeruginosa) [16, 17].

The experience with ceftobiprole in diabetic foot infections 
has been analysed in detail. One three-year study examined the 
in vitro activity of ceftobiprole against 443 isolates (251 aero-
bic and 192 anaerobic) of complicated diabetic foot infections, 
in which it was demonstrated to be active against a wide range 
of aerobic and anaerobic Gram-positive and Gram-negative 
microorganisms. Ceftobiprole’s activity was also compared 
with other antibiotics. In the case of aerobic Gram-positive 
cocci (S. aureus, including MRSA, Staphylococcus epidermid-
is, Staphylococcus haemolyticus, Staphylococcus lugdunensis, 
Streptococcus agalactiae and other streptococci) ceftobiprole 
was more active than cefepime, ceftazidime, cefotaxime, ce-
foxitin, levofloxacin, linezolid, daptomycin and vancomycin 
[18]. Furthermore, in a multi-centre, double-blind, randomised 
clinical study on cSSTIs, in which ceftobiprole (500  mg/8  h) 
was compared to vancomycin (100 mg/12 h) plus ceftazidime 
(1000 mg/8 h), approximately one-third of the cases included 
were diabetic foot infections (n=257, 72% of these considered 
to be moderate or severe). The most frequently isolated micro-
organisms were: Methicillin-sensitive S. aureus (MSSA) 38%, 
MRSA 18%, Enterobacter cloacae 9%, Streptococcus agalac-
tiae 9%, P. aeruginosa 8%, and Proteus mirabilis 7%. In this 
sub-population, the clinical recovery rates were as follows: 
125/145, 86.2% for ceftobiprole and 63/77, 81.8% for van-
comycin plus ceftazidime (mild infection 97.6% vs. 100% and 
severe infection 70.6% vs. 53.8%, respectively). However, the 
average duration of treatment was significantly shorter with 
ceftobiprole (8.7 vs. 9.5 days, respectively, p <0.05), suggesting 
a faster response to treatment when ceftobiprole is used [19]. 

3. Infections originating from vascular catheters

S. aureus (MRSA: 9.5-26.6%) and coagulase-negative 
staphylococci (methicillin-resistant: 53.4%) are the most com-
mon causative organisms of infections associated with venous 
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22. 	 Ripa M, Morata L, Rodríguez-Núñez O, Cardozo C, Puerta-Alcal-
de P, Hernández-Meneses M et al. Short-Term Peripheral Venous 
Catheter-Related Bloodstream Infections: Evidence for Increasing 
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spective Observational Study. Antimicrob Agents Chemother. 2018; 
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prole medocaril versus ceftazidime plus linezolid for the treatment 
of hospital-acquired pneumonia. Clin Infect Dis 2014; 59(1):51–61. 
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CONCLUSIONS 

Ceftobiprole may be a good therapeutic alternative for the 
empirical treatment of cSSTIs, including those involving diabet-
ic foot, vascular catheter, and fever with no apparent infectious 
origin, which require hospitalisation and have risk factors for 
MRSA and P. aeruginosa. Always within the treatment proto-
cols established at each hospital.
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Staphylococcus aureus (MRSA) and Streptococcus pneumoni-
ae resistant to third-generation cephalosporins and penicillin 
[1]. Ceftobiprole is excreted mainly in the urine in an unaltered 
form and with a high recovery of the administered dose of the 
drug [2]. The information from the clinical trials evaluating the 
pharmacokinetics of ceftobiprole shows that the AUC and Cmax 
values ​​are proportional to the doses that were used. Likewise, 
using data from the participants in these trials the degree of 
dose modification required based on alterations in renal func-
tion has been established (table 1) [3]. In the following, we de-
scribe the tolerability and safety of ceftobiprole.

ABSTRACT

Ceftobiprole is a fifth generation cephalosporin with 
a series of characteristics differentiating it from other be-
ta-lactams, including its antibacterial activity, mainly against 
methicillin-resistant Staphylococcus aureus, resistant Strepto-
coccus pneumoniae and also Gram-negative microorganisms 
such as Pseudomonas aeruginosa. This antibiotic has been 
subjected to various clinical trials and the results of these 
have led to its approval in Spain for the treatment of noso-
comial pneumonia, excluding that associated with mechanical 
ventilation, and community-acquired pneumonia. The results 
of various ceftobiprole clinical studies provide consistent in-
formation on efficacy and tolerability. Ceftobiprole as mon-
otherapy has been shown to be non-inferior to comparator 
antibiotics in different settings. Information is available on its 
compatibility with other drugs in Y-site administration, impor-
tant from the point of view of the intravenous treatment of 
patients who present venous access limitation. On the other 
hand, and in contrast to other cephalosporins, ceftobiprole 
presents a low risk of infection due to Clostridium difficile and, 
in comparison with ceftaroline, neutropenia has not been re-
ported to present any significant issues.

Keywords: ceftobiprole, tolerability, safety, Y-site administration

INTRODUCTION

Ceftobiprole is a cephalosporin that has as a number of 
differences compared to most other compounds of this fam-
ily of beta-lactams, its activity against methicillin-resistant 
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Ceftobiprole review

Normal renal function 500 mg/8h

CrCl 50-80 mL/min 500 mg/8h

CrCl 30-49 mL/min 500 mg/12h

CrCl < 30 mL/min 250 mg/12h

Table 1	� Ceftobiprole dose adjustment according 
to renal functiona

aThe proposed adjustment is based on the Cockcroft-Gault formula and a standard 
dose of 500 mg / 8h intravenously. The dose is based on a 2-hour infusion.

SAFETY AND TOLERABILITY OF CEFTOBIPROLE IN 
CLINICAL TRIALS 

A phase I study in which a single dose ranging from 125 
mg to 1,000 mg was administered aimed at analysing the phar-
macokinetics and safety of ceftobiprole. One study objective 
was to establish the duration of time with ceftobiprole con-
centration maintained above the MIC, since, as a beta-lactam 
antibiotic, its efficacy is related to the pharmacokinetic-phar-
macodynamic index of T> MIC [4]. The safety of the drug was 
assessed in 40 patients, eight (20%) of whose presented a total 
of 10 adverse effects. Only 3 adverse events of moderate impor-
tance were recorded (nausea and vomiting), with taste changes 
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were 15 cases of serious adverse events, 3.9% in the ceftobi-
prole group compared to 3.1% in the comparator.

SAFETY AND TOLERABILITY OF CEFTOBIPROLE IN 
OTHER STUDIES 

One study was conducted to analyse possible modifica-
tions of the intestinal microflora produced by the 7-day expo-
sure to treatment with ceftobiprole [11]. A total of 12 healthy 
volunteers of both genders were included. No fecal excretion 
of ceftobiprole was observed and only a minimal effect on the 
fecal flora was reported. Unlike other cephalosporins, ceftobi-
prole is considered an antibiotic associated with a lower risk of 
Clostridium difficile infection. In a subsequent study in mice, 
it has been proposed that ceftobiprole has an inhibitory effect 
on C. difficile activity and a moderate effect on the anaerobic 
microflora [12].

Agranulocytosis associated with prolonged treatment with 
ceftobiprole, related to a mechanism related to T-cells has been 
described [13].

Although the understanding of the impact of the inoc-
ulum effect in cephalosporins observed in vitro is limited, in 
a study conducted on strains of methicillin-susceptible S. 
aureus, ceftobiprole had the lowest MICs at a high inoculum 
when compared to other cephalosporins [14]. The significance 
of these results should be considered alongside the findings of 
subsequent in vivo studies.

A review of the literature analysing the neurological ef-
fects attributable to treatment with beta-lactams has been 
published [15]. This review highlighted renal failure as the main 
risk factor for production of neurological adverse effects at-
tributable to beta-lactams. Unlike what was observed with oth-
er cephalosporins, no case of neurological alterations related to 
ceftobiprole could be identified in that review.

A case report of combination therapy with daptomycin 
and ceftobiprole in the treatment of a methicillin-resistant S. 
aureus endocarditis in prosthetic valve has been described [16]. 
The patient was treated with a dose of 500 mg/8h of ceftobi-
prole for 11 weeks, with resulting good antibiotic tolerability.

COMPATIBILITY OF CEFTOBIPROLE IN Y-SITE 
ADMINISTRATION

Patients who require treatment with more than one drug 
administered intravenously, and have limited venous access, 
have a higher risk of receiving ineffective treatment when one 
drug is administered simultaneously with another in Y-site ad-
ministration [17]. One study aimed to analyze the compatibility 
of ceftobiprole with other drugs, through visual observation, 
measurement of turbidity and the appearance of possible par-
ticles as a result of Y-site administration. The initial solution of 
ceftobiprole was diluted as per the product specifications re-
sulted in a turbid-free mixture, without particles. Table 2 shows 
the compatibility of ceftobiprole with other antimicrobials in-
cluded in the study.

observed in the remaining 7 cases. No serious adverse effects 
were detected. When the study was extended to multiple doses 
in 16 healthy male volunteers, 5 patients had at least one ad-
verse effect in the 500 mg group versus 6 in the 750 mg group 
compared to 3 in the placebo group. The number of adverse 
events was higher in patients receiving the highest dose, with 
a total of 22 mild and 5 moderate events, and reversible taste 
alteration again predominating [5]. A network meta-analysis 
compared the efficacy and safety of ceftobiprole versus 8 other 
antibiotics for the treatment of Hospital-acquired pneumonia 
[6]. The results showed no significant differences in the adverse 
effects of this cephalosporin against the rest of the compara-
tor agents. A double-blind, randomized, multinational clinical 
trial compared the efficacy and safety of ceftobiprole versus 
vancomycin in the treatment of skin and soft tissue infections 
caused by gram-positive organisms [7]. A total of 784 patients 
were included in the study. Adverse effects and concomitant 
diseases were the main reasons for patient discontinuation in 
the study. A total of 52% of the patients presented at least one 
adverse event in the ceftobiprole group compared to 51% in 
the vancomycin group. Serious side effects were observed in 
6% of patients in each group, 4% and 6% of patients discon-
tinuated the study drug in the ceftobiprole and the vancomy-
cin group, respectively. Nausea and vomiting were the most 
frequent adverse effects, reaching 21% in the ceftobiprole 
group versus 12% in the vancomycin group. In the vancomycin 
group 3 deaths were recorded compared to none in the cefto-
biprole group. None of the deaths were attributed to antibiotic 
treatment. Similar results were observed in another phase III 
clinical trial in this same indication with 56% patients present-
ing adverse events in the ceftobiprole arm compared to 57% in 
the comparator group, which in this case was the combination 
of vancomycin associated with ceftazidime. Four percent of pa-
tients discontinued treatment in both groups [8]. 

One study evaluated the efficacy and safety of ceftobiprole 
vs ceftriaxone with or without linezolid in patients with commu-
nity-acquired pneumonia who required hospital admission [9]. 

A total of 638 patients were included in the analysis. A 
total of 6% patients discontinued the treatment early in the 
ceftobiprole group compared to 4% in the comparator group. 
The incidence of adverse events was 36% in the ceftobiprole 
group versus 26% with the comparator, the differences being 
mainly due to the occurrence of nausea and vomiting.

A phase III study analyzed the efficacy of ceftobiprole ver-
sus ceftazidime with or without linezolid in the treatment of 
nosocomial pneumonia, including pneumonia associated with 
mechanical ventilation (VAP) [10]. A total of 781 patients were 
randomized, 176 of whom had VAP. A total of 24.9% patients 
presented some adverse events in the ceftobiprole group com-
pared to 25.4% in the comparator group. Patients in the cefto-
biprole group had a lower incidence of diarrhea than those in 
the ceftazidime plus linezolid group, 3.1% versus 6.5%, respec-
tively. A total of 4.4% patients in the ceftobiprole arm versus 
2.6% of patients treated in the comparator group (ceftazidime 
plus linezolid) developed hyponatremia. Dysgeusia was only 
observed in the ceftobiprole group, in 1.3% of patients. There 
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Antimicrobial Concentration (mg/mL)

Acyclovir 7

Azithromycin 2

Clindamycin phosphate 10

Fluconazole 2

Metronidazole 5

Trimethoprim/sulfamethoxazole 0.8/4

Voriconazole 4

Table 2	� Antimicrobials compatible with 
ceftobiprole in 5% glucose solution, 
saline solution and ringer lactate solution 
for injectiona.

aThe information contained in this table is only valid for the specific brands used in 
the referenced study [16] and at the concentrations indicated.




