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ABSTRACT

Ceftolozane is a potent antimicrobial against Pseu-
domonas aeruginosa, including carbapenem-resistant and 
multidrug-resistant strains, and is also active against Entero-
bacteriaceae. It MIC (minimal inhibitory concentration) and 
MPC (mutant preventive concentration) are close together, 
allowing to avoid the mutant selection window specifically 
in the treatment of Pseudomonas aeruginosa infection. The 
molecule is time-dependent and stable when reconstituted at 
room temperature, facilitating safe and effective dosage opti-
mization in frail and critically ill patients. It has been shown to 
be non-inferior to meropenem in the treatment of nosocomi-
al infection in the ASPECT-NP study but superior in post-hoc 
studies in the subgroup of patients with ventilator-associated 
pneumonia, without the emergence of resistance during treat-
ment. It is FDA approved at a dose of 3 g every 8 hours in the 
treatment of nosocomial pneumonia (HABP/VABP) in adults.
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MOLECULAR STRUCTURE AND IN VITRO ACTIVITY

Ceftolozane-tazobactam (CT) is the fusion of two molecu-
les. A modified cephalosporin and a beta-lactamase inhibitor. 
Ceftolozane has an aminothiadiazole ring in the side chain, 
which, like that of ceftazidime and other extended-spectrum 
cephalosporins, confers activity against Gram-negatives. Its 
oxime group confers stability against beta-lactamases and 
dimethylacetic acid gives it enhanced anti-pseudomonal ac-
tivity. The difference between ceftolozane and ceftazidime lies 

in position 3 of the side chain: ceftolozane has a pyrazole (he-
avier) instead of the pyridinium (lighter) found in ceftazidime. 
The pyrazole ring confers a steric hindrance between the cef-
tolozane and the gateway to the binding pocket in the active 
site of beta-lactamase, thus preventing hydrolysis and ensu-
ring stability against ampC (figure 1 and 2) [1,2]. The result of 
these structural changes is its potent inhibition of PBP3 with 
high affinity for PBP1b and PBP1c of Pseudomonas aerugino-
sa, while maintaining stability against ampC-type beta-lacta-
mases. In addition, it is less affected than other antipseudo-
monal drugs by changes in permeability, Gram-negative outer 
membrane efflux pumps, reduced uptake through porins or 
modification of PBPs. Ceftolozane has activity against Gram-
negative bacilli carrying classical class A beta-lactamases 
(TEM-1 and SHV-1), but like ceftazidime or ceftriaxone, it is 
hydrolyzed by extended-spectrum beta-lactamases (ESBLs) or 
carbapenemases. The addition of tazobactam extends the acti-
vity of ceftolozane against ESBL-producing bacteria, especially 
Escherichia coli and some anaerobic species.

Data collected in the United States between 2011 and 
2014 reported up to 97% susceptibility to CT in P. aerugino-
sa, including multidrug-resistant and carbapenemase-insus-
ceptible strains [3]. Equivalent data were reported in the USA 
between 2015 and 2017, showing 97.5% susceptibility in P. 
aeruginosa (MIC50/90, 0.5/2 mg/L), including multirresistant 
(82.8% susceptible to CT) and extensively resistant (82.9% sus-
ceptibility) isolates [4]. Sader et al. reported slightly reduced 
overall susceptibility rates in P. aeruginosa isolates from Eu-
rope, 86.3% (at 8 mg/L) and 84.5% (4 mg/L), respectively [5]. 
In two Spanish studies with more than 1400 P. aeruginosa iso-
lates, CT activity exceeded 94% sensitivity, the most frequently 
expressed resistance mechanism was oprD + ampC (80%) and 
the clone, in more than 68%, was ST175 [6,7]. The antipseu-
domonal activity of CT remains stable (MIC ≤ 2 mg/L) even 
when the MIC of ceftazidime, cefepime or piperacillin-tazo-
bactam rises above 32 and 128 mg/l in carbapenem-resistant 
strains [8].
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Klebsiella spp. (MIC50/90, 4/16 mg/L) and the combination was 
not active against carbapenemase-producing bacteria (MIC 64 
mg/L) [9].

Results obtained from the follow-up study of respiratory 
samples conducted in American hospitals between 2013 and 
2015 with more than 1,500 isolates of P. aeruginosa and more 
than 2,360 strains of Enterobacteriaceae, in which CT was 
shown to be the most active antibiotic against P. aeruginosa 

Analyzing activity against enterobacteria, Pazzini et al re-
ported that CT was active against 85% of ESBL-producing E. 
coli isolates, in contrast to 57.5% of ESBL-producing K. pneu-
moniae. The CENIT study conducted on isolates from Spanish 
hospitals showed that CT was highly active not only against 
multidrug-resistant P. aeruginosa, but also against E. coli, in-
cluding wild-type, ampC phenotype and ESBL-producing iso-
lates. Activity decreased against the ESBL-producing strains 

Figure 1	 �Structure–activity relationships for ceftolozane

Figure 2	 �The gate of the 3-side chain binding pocket of AmpC b-lactamase and the 
chain of ceftolozane approaching (modified from reference 2)
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h. Protein binding of the drug is approximately 20%, and the 
volume of distribution is approximately 14 L [20]. It is eliminat-
ed by glomerular filtration; ceftolozane is minimally metabo-
lized, and approximately 20% of tazobactam is metabolized 
by hydrolysis [21]. Ceftolozane is not a substrate of organic 
anion transporters organic anion transporters 1 and 3 (OAT1 
and OAT3), whereas tazobactam is. Ceftolozane administration 
does not influence the clearance of tazobactam and increases 
the concentration of tazobactam [22].

CT is bactericidal, and the main pharmacodynamic param-
eter is time above MIC (for 40-50% of the dosing interval). In a 
population pharmacokinetic model to evaluate CT doses in no-
socomial pneumonia through Monte Carlo simulations, a dou-
bling of CT doses (2 g ceftolozane/1 g tazobactam) was found 
to substantially improve the number of patients achieving ad-
equate time-above-MIC values. For MIC values up to 8 mg/L, 
the probability of target attachment (PTA) was 59-75% for 
doses of 1.5 g every 8 h, while for doses of 3 g every 8 hours, 
it was 88-96%. This manuscript justifies the dose of CT used 
in the clinical studies of patients with nosocomial pneumonia 
[23]. This dose of 3 g three times daily achieves sufficient PTA 
in populations with increased glomerular filtration rate ([CrCl] 
≥ 130 mL/min)) [21], so common in the critically ill patient. 
Ceftolozane is also stable when reconstituted for more than 24 
h at room temperature diluted in both saline and 5% dextrose, 
as demonstrated by particle degradation studies, in polyvinyl 
infusion systems or elastomeric pumps, as used in home hospi-
talization units [24].

Therefore, β-lactam antibiotics (except for imipenem) and 
especially CT should be administered at high doses, in pro-
longed or continuous infusion and after a loading dose. This 
recommendation is based on achieving several objectives: i) 
achieving time-dependent bactericidal activity, ii) the inoc-
ulum effect in foci with high bacterial load (present at the 
start of treatment), iii) ensuring the PK/PD ratio for high MIC 
against P. aeruginosa, iv) overcoming the changes that renal 
clearance may cause in drug distribution, and v) overcoming 
the preventive concentration of mutants in the infective focus 
[17]. This, as we shall see, is particularly indicated in nosocomi-
al pneumonia.

CLINICAL EVIDENCE ON CEFTOLOZANE-
TAZOBACTAM IN NOSOCOMIAL PNEUMONIA

In 2015-2016, after CT was approved at a dose of 1.5 g 
every 8 h in both complicated urinary tract infection and in-
tra-abdominal infection, a pharmacokinetic model was used to 
justify dosing regimens in nosocomial pneumonia in phase 3 
studies through Monte Carlo simulations. These showed that a 
3 g dose of CT for nosocomial pneumonia patients with normal 
renal function is needed to achieve a PTA > 90% (98% actual) 
for the 1 log clearance target against pathogens with an MIC 
of ≤ 8 mg/L in ELF, compared to the approved 1.5 g dose for 
cIAIs and cUTIs [23].

With this approach, a randomized, controlled, dou-

and with activity against ESBL-producing Enterobacteriaceae 
isolates, detected in 13.4% of E coli and K. pneumoniae iso-
lates. CT was active against blaCTX-M-14-like and blaCTX-M-15-like 
isolates. However, it was less active against blaCTX-M and had 
low activity against Proteus spp [10]. Taking clinical isolates 
from patients in the ASPECT-NP study, CT was active against 
more than 75% of Enterobacteriaceae isolates that did not 
carry carbapenemases and together with amikacin showed the 
highest activity against P. aeruginosa isolates [11].

Studies in patients with ventilator-associated pneumonia 
[12,13] caused by P. aeruginosa, showed high mortality rates 
if initial empirical antibiotic treatment is not appropriate. This 
has been replicated in other models of infection with high se-
verity or greater inoculum effect such as bacteremia [14-16]. 
In these complex or severe infection models, the MIC and, if 
possible, the MPC (mutant preventive concentration) should be 
reached as soon as possible to prevent the antimicrobial from 
falling within the mutant selection window and to avoid in-
tra- or post-treatment resistance. At MPC >32 mg/L for cef-
tazidime, cefepime, aztreonam, piperacillin-tazobactam and 
imipenem, the likelihood of serum concentrations of these 
antibiotics falling within the mutant selection window is very 
high, even when administered at maximal doses by prolonged 
or continuous infusion. The risk is moderate for meropenem 
(8 mg/L MPC) administered at doses of 6 g daily by prolonged 
infusion, and very low for CT (2 mg/L MPC) at doses of 3 g 
by 3-4-hour infusion every 8 h [17]. Also, cross-resistance be-
tween classical antipseudomonics may modify the emergence 
of resistance, so that CT could be a safe alternative in this type 
of infections. 

Although CT has been shown to be the treatment of 
choice for P. aeruginosa infections, including multidrug-resist-
ant and extensively resistant strains, some cases of resistance 
have also been reported. The most reported cause is associated 
with mutations in the ampC gene. The rate of development of 
this type of resistance ranged from 2-14% depending on the 
published series [18]. Another reason for resistance in treat-
ment would be related to activity in the PDC-3 catalytic center 
of the ampC pocket [19]. These conformational changes in the 
PDC-3 loop are caused by the substitution of the amino acid 
E221K, which produces morphological and electrostatic mod-
ifications in the catalytic center. This facilitates the hydroly-
sis of ceftazidime, aztreonam, cefepime and ceftolozane. This 
mechanism has already been described in other species and for 
ceftolozane is estimated at 1.5% of isolates. Inhibitors (tazo-
bactam, avibactam) partially restore this change. A final rea-
son is the presence of other enzymes in the periplasmic space 
(OXA-17, OXA-24, MBL, GES).

PHARMACOKINETIC-PHARMACODYNAMIC 
PROFILE

Ceftolozane is an intravenous cephalosporin that exhib-
its linearity after single or multiple administrations. The mean 
Cmax after a 1 g dose of ceftolozane ranges from 58.4 mg/L 
to 92.3 mg/L and plasma half-life values range from 2.3 to 2.7 
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sistance during treatment. Among the 58 isolates in the mero-
penem treatment arm, 15 (25.9%) had corresponding pairs of 
non-susceptible isolates at the start of treatment. Molecular 
typing of these 15 isolates, together with their reference pair, 
determined that two pairs (3.4%) had different sequence types 
and that the other 13 pairs of isolates had the same sequence 
type. The most common molecular mechanisms of resistance 
found in the meropenem arm were oprD deficiency (n = 12 of 
13; 92.3%) and overexpression of the protein and overexpres-
sion of the MexXY efflux system (n = 3 of 13; 23.1%) [30]. This 
study highlights the need to reach the MIC as soon as possible 
and if possible, the MPC to avoid falling into the resistance 
selection window. The risk is moderate for meropenem (MIC 
of 8 mg/L) administered at a dose of 6 g daily by prolonged 
infusion. However, the selection risk is very low for CT (2 mg/L 
MPC) at a dose of 3 g by 3–4-hour infusion every 8 h. We will 
observe over time whether the impact of the unavailability of 
CT during the COVID-19 pandemic might have generated more 
resistance in hospital-acquired ventilated P. aeruginosa pneu-
monia.

In conclusion, CT was clinically and microbiologically ef
fective drug in the treatment of nosocomial pneumonia, stable 
at room temperature and safe at its approved dosage of 3g 
every 8 hours, which allows optimizing treatment in the frail 
or critically ill patient.
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