Concept of odd and odds ratio (OR)

If, in a group, we call P the proportion of individuals with disease E, we call odd to the magnitude P/(1-P). Examples:

- If the relative frequency of " E " is 0.8 ; the odd is $0.8 / 0.2=4$ and it means that there are 4 " E " for every non-"E".
- If the relative frequency of " E " is 0.5 , the odd is 1 ; That is, there is an " E " for every non-" E."
- If the relative frequency of " E " is 0.2 , the odd is $0.2 / 0.8=0.25$ which is equal to $1 / 4$ and says that there is one " E " for every 4 not " E "
- If the relative frequency of " E " is 0.05 , the odd is $0.05 / 0.95=0.0526$

In this last example, the odd takes a value quite close to P . In general, small proportions correspond to odd values very similar to those of the proportion, since, in these cases, the denominator 1-P is close to 1 and, therefore, $P /(1-P)$ is close to P.

Example: If P is 0.01 , it is odd $=0.01 / 0.99=0.0101$.
Just as the relative risk, RR, is defined as the ratio of two Specific Risks, the odds ratio (OR), It is defined as the ratio of two odds: the odds of patients in those exposed to a certain factor divided by the odds of patients in those not exposed. Let's look at an example: of a total of 300,000 individuals, 100,000 have contact with the health system (HS), 50,000 acquire an infection ("I+") and 40,000 are infected and have had contact with the HS.

- Specific risk in those exposed to HS: $\mathrm{R}_{1}=40.000 / 100.000=\mathbf{0 . 4 0}$
- Specific risk in those not exposed to $\mathrm{SS}: \mathrm{R}_{0}=10.000 / 200.000=0.05$

Relative Risk of SS exposure for infection: RR $=0.40 / 0.05=8$

From the Specific Risks we can calculate the odds and OR:

$$
\begin{aligned}
& \text { ODD }\left(R_{1}\right)=0.40 / 0.60=40000 / 60000=0.67 \\
& \text { ODD }\left(R_{0}\right)=0.05 / 0.95=10000 / 190000=\mathbf{0 . 0 5 2 6}
\end{aligned}
$$

$$
\text { OR = ODD }\left(\mathbf{R}_{1}\right) / \text { ODD }\left(\mathbf{R}_{0}\right)=0.67 / 0.0526=\underline{\mathbf{1 2} .7}
$$

That is, in these data, exposure to HS multiplies the proportion (or percentage) of infection by 8 and multiplies the odd, the number of infected per healthy person, by 12.7.

