Supplementary material REQ-2024-003

Concept of odd and odds ratio (OR)

If, in a group, we call P the proportion of individuals with disease E, we call **odd** to the magnitude **P/(1-P)**. Examples:

- If the relative frequency of "E" is 0.8; the odd is 0.8/0.2=4 and it means that there are 4 "E" for every non-"E".

- If the relative frequency of "E" is 0.5, the odd is 1; That is, there is an "E" for every non-"E."

- If the relative frequency of "E" is 0.2, the odd is 0.2/0.8 = 0.25 which is equal to 1/4 and says that there is one "E" for every 4 not "E"

- If the relative frequency of "E" is 0.05, the odd is 0.05 / 0.95 = 0.0526

In this last example, the odd takes a value quite close to P. In general, **small proportions correspond to odd values very similar to those of the proportion**, since, in these cases, the denominator 1-P is close to 1 and, therefore, P/(1-P) is close to P.

Example: If P is 0.01, it is odd = 0.01 / 0.99 = 0.0101.

Just as the relative risk, RR, is defined as the ratio of two Specific Risks, the **odds ratio (OR)**, It is defined as the ratio of two odds: the odds of patients in those exposed to a certain factor divided by the odds of patients in those not exposed. Let's look at an example: of a total of 300,000 individuals, 100,000 have contact with the health system (HS), 50,000 acquire an infection ("I+") and 40,000 are infected and have had contact with the HS.

• Specific risk in those exposed to HS: R₁ = 40.000 / 100.000 = 0.40

• Specific risk in those not exposed to SS: R₀ = 10.000 / 200.000 = 0.05

Relative Risk of SS exposure for infection: RR = 0.40 / 0.05 =8

	HS	No HS	TOTAL		
+	A = 40,000	B = 10,000	M ₁ = 50,000	?	P ₁ = 4 / 5 = 0.80
۱-	C = 60,000	D = 190,000	M ₀ = 250,000	?	P ₀ = 6 / 25 = 0.24
Unti	N ₁ =100,000	N ₀ = 200,000	N = 300,000	?	$P_1 / P_0 = 0.80 / 0.24 = 3.3$
Ι					
	$R_1 = 0.40$	R₀ = 0.05 ?	RR = 0.40/0.05 = 8		

From the Specific Risks we can calculate the odds and OR:

ODD (R_1) = 0.40 / 0.60 = 40000 / 60000 = 0.67 ODD (R_0) = 0.05 / 0.95 = 10000 / 190000 = 0.0526 OR = ODD (R_1) / ODD (R_0) = 0.67 / 0.0526 = <u>12.7</u> That is, in these data, exposure to HS multiplies the proportion (or percentage) of infection by 8 and multiplies the odd, the number of infected per healthy person, by 12.7.