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microbiología. El virus debe su nombre a la forma en que in-
fecta las células, lo que le permite producir sincicios, que per-
miten que el material genético del virus se desplace a través de 
las células sin tener que liberar descendientes virales al exterior 
celular, lo que reduce la identificación por parte del sistema in-
munitario. Esto provoca una enfermedad con un alto impacto 
tanto en niños como en adultos mayores de 60 años, lo que ha 
motivado el desarrollo de diversas intervenciones preventivas 
basadas en vacunas y anticuerpos monoclonales para ambos 
grupos de edad. Las características epidemiológicas de este vi-
rus, que circula en epidemias durante los meses más fríos del 
año y presenta una marcada deriva genética y antigénica de-
bido a su alta capacidad de mutación, deben ser tenidas en 
cuenta a la hora de utilizar y diseñar estos métodos preventi-
vos. En esta revisión se abordan los elementos microbiológicos 
y epidemiológicos más importantes del VRS, así como la forma 
en que han afectado a la creación de medicamentos preventi-
vos y a su uso en el futuro.

Palabras clave: Virus respiratorio sincitial; proteína F; microbiología; epi-
demiología

INTRODUCTION

After COVID-19 pandemic, there has been a surge of in-
terest in virology, particularly in microbes that have a signif-
icant impact on human health but have previously gone un-
noticed. One of these is respiratory syncytial virus (RSV), which 
generates annual epidemics primarily in infants but also has a 
significant influence on the elderly’s health.

Before pandemic, multiple product concepts for RSV pre-
vention in various age groups were in development. Among 
the prophylactic approaches available were monoclonal anti-
bodies for passive immunization and vaccinations for children 
and people >60 years. This, combined with the inclusion of this 
virus in most surveillance systems globally, particularly in Eu-
rope, illustrates the high level of interest in this pathogen and 
the burden of disease it causes.

Review

ABSTRACT

The properties of the main surface proteins and the viral 
cycle of the respiratory syncytial virus (RSV) make it an attrac-
tive pathogen from the perspective of microbiology. The virus 
gets its name from the manner it infects cells, which enables 
it to produce syncytia, which allow the virus’ genetic material 
to move across cells without having to release viral offspring 
to the cellular exterior, reducing immune system identification. 
This causes a disease with a high impact in both children and 
adults over 60, which has sparked the development of sever-
al preventive interventions based on vaccines and monoclonal 
antibodies for both age groups. The epidemiological character-
istics of this virus, which circulates in epidemics throughout 
the coldest months of the year and exhibits a marked genetic 
and antigenic drift due to its high mutation capability, must be 
taken into consideration while using these preventive meth-
ods. The most important microbiological and epidemiological 
elements of RSV are covered in this study, along with how 
they have affected the creation of preventive medications and 
their use in the future.
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Características microbiológicas y epidemiológicas 
del virus respiratorio sincitial

RESUMEN

Las características de las principales proteínas de superfi-
cie y el ciclo vírico del virus respiratorio sincitial (VRS) lo con-
vierten en un patógeno atractivo desde el punto de vista de la 
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in respiratory samples from children with bronchopneumonia 
and laryngotracheobronchitis, designating them “Long strain” 
and “Snyder strain,” respectively. When it was discovered that 
the Long strain, as well as the Snyder and CCA strains, exhibited 
a very similar respiratory pathology, they were merged into a 
single group, Respiratory Syncytial Virus, as further papers de-
scribing this disease arose.

Classification and virological features of RSV. RSV 
is a virus belonging to the genus Orthopneumovirus, family 
Pneumoviridae, order Mononegavirales [7,8], and their species 
denomination is Human orthopneumovirus or Orthopneumo-
virus hominis. This family contains RSV as well as other viruses 
that affect various animals, such as bovine and murine RSV 
[7,9–11]. The other genus in the family Pneumoviridae that af-
fects also human being is Metapneumovirus, which has only 
one representative, the human Metapneumovirus (hMPV) [2], 
which was initially reported in the Netherlands in 2001 [12].

RSV has a dual morphology, sometimes spherical with a 
diameter of roughly 100-350 nm and occasionally filamentous 
with a diameter of 60-200 nm [13]. In reality, when cultivat-
ed in cells, its filamentous form is common, with many of the 
virions remaining attached to the infected cell and not being 
released until certain procedures are used.

The genetic material is made up of single-stranded, un-
segmented, negatively polarized RNA [14], which is made up of 
15,000 nucleotides. The RSV genome is organized into 10 genes 
and 11 ORFs (Open Reading Frames) encoding 11 structural 
and non-structural proteins, NS1, NS2, N, P, M, SH, G, F, M2-1 
& M2-2 (encoded by two ORFs) and L [15,16] (Figure 1) (Table 
1). The genetic material is surrounded by many proteins, includ-

It is vital to have quality knowledge on the microbiological 
features of RSV, as well as the aspects involved in its seasonal-
ity and form of circulation, in order to understand the details 
of their use and the reasons for their use. As a result, we pro-
pose this narrative review focused on the virological features 
and an examination of the available RSV epidemiology data.

VIROLOGICAL FEATURES OF RSV

History of their discovery. RSV was first described in 
1956 [1], but it was not until much later that it was linked to 
the respiratory disease it produces in humans [2]. In fact, the 
virus was discovered in a group of 14 chimps suffering from 
the common cold, and a virus was isolated from them that 
the researchers termed CCA, or “Chimpanze Coryza Agent” 
[3,4]. Antibodies were found in all convalescent animals, im-
plying that the attack rate was 100% [5]. Furthermore, one of 
the animal caregivers had an acute respiratory infection and 
a detectable antibody response to this novel virus, but unlike 
the animals, the etiologic agent could not be identified in the 
respiratory samples. The pathogenicity of the CCA virus was 
demonstrated by re-inoculating the isolated virus in healthy 
chimps, who acquired the sickness three days later.

Subsequently, it was revealed that this same infectious 
agent caused respiratory illness in children, and that many of 
them had neutralizing antibodies against it, therefore the virus 
was named Respiratory Syncytial Virus [2] owing to the behav-
ior it displayed in cell cultures. As 80% of 4-year-olds had an-
tibodies against RSV, this led to the conclusion that CCA was a 
human virus that infrequently affected other primates [6]. The 
researchers Chanock and Finberg [6] found two distinct viruses 

Figure 1  Morphological features of the Respiratory Syncytial Virus and genomic organization and structure of 
genes. On the left site, filamentous form and on the right site spherical form. M2-1 and M2-2 are 
represented inside the virion but are not present in nature because they are non-structural proteins. 
M2-1 and M2-2 genes are overlapped because they pertain to the same gene but are translated by 
different ORFs (Open Reading Frames). Created with BioRender.com.
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brief spacer of 1-58 nucleotides that has no known function 
and varies between virus genotypes.

Functions of G, F and SH proteins. Antigenic sites and 
their importance for disease prevention. RSV surface gly-
coproteins G and F are the most important. These two proteins 
are responsible for virus adherence to the host cell and virion 
internalization within the cell, and therefore for the virus’s in-
fectious process.

Protein G is an approximately 80 kDa heavily glycosylated 
protein. Depending on the serotype, it has approximately 298 
amino acids. It has so many carbohydrate groups connected to 
the protein that the glycosylated portion accounts for 60% of 
the total protein weight [20]. Its primary purpose is to keep RSV 
attached to the host cell. The action of this protein is known 
from trials in which RSV adherence to HeLa cells was reduced 
using specific antibodies against the G protein, demonstrating 
that the function of this protein was cell adhesion [21]. How-
ever, this protein serves other purposes. It plays a role in both 
the inflammatory response and immunological evasion. G pro-
tein may mimic some cellular receptors and be responsible for 
some inhibitory effects, such as those caused by TNF-α [22]. As 
a result, future vaccines directed against this immunogenic pro-
tein should help to minimize illness by lowering virus-induced 
inflammation as well as viral replication [23,24].

The F protein (fusion protein) is a 574-amino acid trans-
membrane protein [25]. It is synthesized in its inactive state 
(F0) and is surrounded by strain-dependent glycans. F protein 
is made up of three F0 monomers (trimer). This inactive protein 
is cleaved by furin-like proteases [26], resulting in the forma-
tion of two protein subunits, F1 and F2, which are covalently 
connected by disulfide bridges [27], activating the F protein to 
its post-fusion state [20]. The hydrophobic fusion peptide is 
buried in a central cavity of the protein in the pre-fusion state 

ing nucleoprotein (N), phosphoprotein (P), and RNA-depend-
ent polymerase (L), which are involved in the encapsulation of 
the virion RNA to create the ribonucleoprotein (RNP) complex, 
which is part of the viral replication machinery. Furthermore, 
M2-1 and M2-2 proteins proceed from the same gene express-
ing two different proteins by two different ORFs. M2-1 protein 
is an enzyme that increases RNA transcription processivity, and 
M2-2 has regulatory activities in RNA replication and transcrip-
tion [17]. The M, or matrix protein, is found beneath the virus 
membrane and is in charge of viral structural integrity, as well as 
mechanisms associated to virion production and virus outward 
“budding.”

RSV contains three distinct membrane glycoproteins. Pro-
tein G is a cell adhesion protein with the primary function of 
anchoring to the host cell membrane. The F protein is involved 
in the fusion of the cytoplasmic membrane of the host cell and 
the viral membrane. The SH (Short Hydrophobic) protein gen-
erates an ion channel that is required for virion internaliza-
tion into the cell. RSV contains two extra proteins that are not 
found in other paramyxoviruses. These are the non-structural 
NS1 and NS2 proteins, which have roles linked to interferon 
production inhibition, cell signaling limiting, and apoptosis in-
hibition [17].

To protect themselves from enzymatic destruction, to be 
recognized by cellular translation mechanisms [18], and to es-
cape identification by certain immune system elements [19], 
the mRNAs that give rise to these proteins are methylated at 
the 5’ end and have polyA tails at the 3’ end. Except for the M2 
gene, which has two separate ORFs producing M2-1 and M2-
2 proteins, the genetic material is arranged from 3’ to 5’, and 
each gene expresses its matching mRNA. The genome starts at 
3’ with an extragenic area of 44 nucleotides before the NS1 
gene and ends with another extragenic region of 155 nucleo-
tides after the L gene. The first nine genes are separated by a 

Protein
Length 

nucleotides
Length 

aminoacids Type Location Function

G 923 298 Structural Lipid envelope Attachment

F 1903 574 Structural Lipid envelope Fusion/attachment

SH 410 64 Structural Lipid envelope Viroporin/ion channel

M 958 256 Structural Inner envelope face Assembly

N 1203 391 Structural Ribonucleocapsid RNA-binding

P 914 241 Structural Ribonucleocapsid Phosphoprotein

L 6578 2165 Structural Ribonucleocapsid Polymerase

M2-1 961 194 Nonstructural Ribonucleocapsid Transcription processivity factor

M2-2 961 90 Nonstructural Not present in virion Transcription RNA replication

NS1 532 139 Nonstructural Not present in virion Inhibit type I IFN induction and signaling, inhibit apoptosis

NS2 503 124 Nonstructural Not present in virion Inhibit type I IFN induction and signaling, inhibit apoptosis

Tabla 1  Features of the genes and proteins composing the RSV genome. Modified from Collins et al. [17].
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dynamics of other respiratory viruses such as influenza and, 
more recently, SARS-CoV-2, which involves the continuous 
emergence of new variants, the introduction of the same and 
new populations, and the extinction of the previous ones [41].

RSV’s mutation rate, like that of other RNA viruses, is sig-
nificant, resulting in constant genetic and antigenic drift with 
repercussions for humans. RSV, like influenza viruses, is very 
variable, and the lack of a proof-reading exonuclease (which 
exists in SARS-CoV-2) results in a mutation rate of roughly 
10-3/10-4 nucleotide substitutions/site/year [41–44], depending 
on the gene and strain. RSV-A viruses appear to have a low-
er mutation rate (1.48x10-3 nucleotide substitutions/site/year) 
than RSV-B viruses (1.92x10-3 nucleotide substitutions/site/
year) [41]. This high mutation rate results in the continuous 
selection of new strains or variants as a result of immune sys-
tem pressure, among other mechanisms [39], which has a clear 
impact on the medium/long term development of effective 
vaccines, antivirals, and monoclonal antibody treatments [1].

The aforementioned genetic and antigenic diversity re-
sulted in a full genotype classification [45,46]. RSV-A has 
9 genotypes (GA1-GA7, SAA1 and NA1) [1], but RSV-B has 
at least 32 genotypes (BA1-14, GB1-GB5, SAB1-4, URU1-2, 
NZB1-2, BA-CCA, BA-CCB, BA-C, CBB and CB1) [41]. These dis-
tinct genotypes of both groups can co-circulate in the same 
RSV season in consecutive years, but the predominant geno-
type often changes each year [47]. This rapid divergence and 
evolution is a problem for vaccines in development or near to 
be approved, since they must create a broad response against 
all genotypes while maintaining a distinct response against 
each genotype.

Within the two RSV proteins with the highest antigenic 
capability (G and F), the G protein exhibits a 10-fold strong-
er antigenic drift than F and other internal virus genes [48]. 
RSV-A viruses (NA1 genotype) have a 72-nucleotide duplica-
tion in the G protein, while RSV-B viruses (BA genotype) have 
a 60-nucleotide duplication [1]. These duplications in the G 
protein’s genetic material have resulted in an increase in viral 
fitness, causing these two genotypes to spread fast around the 
world [49]. The F protein, on the other hand, is far more con-
served, thus while both proteins are of relevance for vaccine 
and monoclonal antibody creation, the F protein has a greater 
interest since it may have higher long-term utility. Nonethe-
less, there are genetic and antigenic changes in the F protein 
(particularly in RSV-B viruses), so its genetic drift will have to 
be taken into account in the future for the adaptation of these 
preventive treatments, as is done with influenza viruses and 
will most likely be done with SARS-CoV-2 infections.

The immune system’s pressure is substantially responsible 
for RSV’s genetic and antigenic drift [39]. The high variability 
of the G protein indicates positive selection, allowing the virus 
immune escape to the host, whereas the lower variability of 
other proteins, including F, indicates that they are genes that 
specialize and optimize over time and have important func-
tions in the cell cycle related to genetic material replication 
and viral transmission.

(F0), and the protein undergoes a conformational change that 
results in a new folding of the protein that allows insertion of 
the fusion peptide into the host cell membrane by a currently 
unknown mechanism [28]. This permits the viral and host cell 
membranes to gradually approach each other [29], resulting in 
membrane fusion and internalization of the virion and its ge-
netic material for starting of the viral replication cycle. Specific 
antibodies against the F protein have been found to impede 
membrane fusion and thereby prevent infection and its sever-
ity [30]. Furthermore, some researchers believe that the F pro-
tein can facilitate cell adhesion and fusion in the absence of G 
and SH proteins, making it one of the most important targets 
for vaccination [31].

The F protein’s membrane-fusion function is responsible 
not only for virion internalization but also for syncytium for-
mation, which is characteristic of RSV disease and pathogene-
sis. During the viral replication cycle, the F protein is produced 
in infected cells and subsequently localized in the cell mem-
brane, where it binds to other neighboring cells and causes 
them to fuse [32]. As a result, syncytia form, which are multi-
cellular and multinucleated formations without continuity dis-
solution, allowing the passage of the virus’s genetic material 
from one cell to another without the need to leave the cell 
[33], favoring transmission and avoiding, at some extent, im-
mune system activity. This pathway is required for RSV patho-
genesis and cytotoxicity. This syncytium-forming impact is al-
so seen in other viral diseases such as measles [34], HIV, herpes 
simplex virus, and, in rare circumstances, SARS-CoV-2 [35,36].

The virus interacts with the host cell via a variety of re-
ceptors. The G protein, for example, binds to CX3CR1 and 
HSPG (heparan sulfate proteoglycans) receptors, whereas the 
F protein interacts with nucleolin receptors, EGFR (Epidermal 
growth factor), IGF1R (Insulin-like growth factor-1 receptor), 
and ICAM-1 (Intercellular molecular adhesion-1) [14,20].

Finally, the SH protein is an integral membrane protein 
of 64-65 amino acids that is very phylogenetically conserved 
[37]. The SH protein acts as an ion channel to permeabilize the 
membrane of the infected cell. It is also involved in the pre-
vention of apoptosis in infected cells.

Evolution/mutation rate. Genetic variability, viral 
evolution, immune escape and impact on reinfections. 
RSV is formed by two distinct subtypes, A and B, that differ 
fundamentally by antigenic and genetic drift of the virus, 
which happens mostly through the G protein but also in the 
other viral proteins at less extent [10]. These two subtypes 
were initially described based on reactivity to monoclonal an-
tibodies [38], but it was later discovered that the differences 
between them were more complex, and were based, as pre-
viously noted, on the existing variety in the sequence of their 
different genes. There are several genotypes within subtypes A 
and B in this sense, but there is no agreement on their nomen-
clature and characterization [39,40]. In fact, this evolutionary 
process, which involves the introduction of new genotypes in-
to populations where others were previously circulating and 
the extinction of the latter [40], is very similar to the seasonal 
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ymerase-RNA-dependent complex. The polymerase then starts 
transcribing viral mRNAs and replicating the genome, generat-
ing positive polarity RNA sequences (antigenome) that serve as 
a template for the synthesis of negative polarity RNA that will 
be part of the viral offspring [54]. The “de novo” synthesized 
genomes bind to the structural proteins that comprise the pol-
ymerase-RNA-dependent complex and the N protein to form 
new nucleocapsids, which are then transported to the infected 
cell’s plasma membrane to bind to the rest of the structural 
proteins and produce the new virions that are released from 
the infected cell.

Pathogenic effect of the virus through the creation of 
syncytia. Although the virus can continue its infectious cycle by 
releasing virions into the extracellular space, the formation of 
syncytia is another prevalent method of intercellular transmis-
sion in RSV, which also lends the virus its name. As previously 
stated, syncytia are cellular clusters that share the same area 
within a single lipid membrane but contain several cell nuclei. 
This superstructure permits viral genetic material to be trans-
ported between cells without being released into the cellular 
space, resulting in a very efficient transmission system that also 
hides the virus from immune system action [55] (Figure 2).

One implication of syncytia formation is that the peak vi-
ral load occurs later than in other viral infections that do not 
induce syncytia [56,57]. Another difference is that this type of 
virus progression appears to be a viral evasion strategy, with 
a direct impact on the severity of infection [55]. Another im-
plication of syncytium formation is that, unlike in the case of 
an influenza infection, where cell death occurs one at a time, 
cell death occurs abruptly in the case of RSV and syncytia, in 
which many cells die at the same time because they are part of 
the same syncytium, which has been dubbed the “burst model” 
[58]. This huge cell death appears to be linked to significant 
lung injury, which has a direct impact on the progression of 

Other processes, like as recombination, which can gen-
erate new genotypes, allow the virus to evolve. According to 
some authors, these recombination can only occur between 
genotypes of the same group (A or B), not between groups 
[41]. However, there is limited data indicating co-infections of 
many genotypes in the same individual, which could allow for 
this form of recombination, thus further research is needed in 
this area. Despite this, the recombination hypothesis may be 
realistic because other viruses, such as SARS-CoV-2, have ex-
perienced this effect, such as the development of the XBB var-
iation as a result of BA.2.10.1 and BA.2.75 recombination [50].

The aforementioned RSV variability, mediated by the 
aforementioned processes, results in recurrent reinfections. 
According to certain research, 36-42% of children suffered 
RSV reinfections within their first five years of life [51]. RSV 
infections do not elicit a long-lasting immune response, but 
reinfections are typically milder than the original episode [52]. 
Antibodies produced during the first infection do not vanish, 
but the antibody titer tends to diminish over time, resulting in 
the recurrence of similar episodes, albeit with reduced clinical 
signs. One of the most critical determinants in reinfection is 
age, particularly for reinfections that occur during the same 
RSV season in which the kid was first infected. These reinfec-
tions are more common and severe in younger children [53].

Viral cycle. RSV infection characteristics are greatly de-
pending on cell type. When RSV enters the respiratory system 
by inhalation, it attaches via the G protein to the ciliated cells 
of the respiratory epithelium via the receptors indicated above, 
most notably CX3CR1. Following this interaction, the F protein 
is activated in its post-fusion state and the virion binds to the 
host cell membrane, fusing both membranes and initiating in-
ternalization [17]. The virion nucleocapsid is then released into 
the cell cytoplasm, where the viral genome, along with the N 
protein, forms a helical structure and associates with the pol-

Figure 2  Mechanism of infection and syncytia formation of respiratory syncytial virus. First the virus attach to 
the cell through G protein (A) and insert their genetic material after fusion of viral/cell membranes via 
activation of F protein. After that, the genetic material starts their replication and mRNA translation 
for protein formation. The F protein is then produced and located into the cell host membrane (B), 
attaching the infected cell to the next one and forming syncytia (C), a superstructure formed by several 
cells with only one cytoplasm but with several nuclei, where the genetic material of the virus can travel 
from one cell to another. When the virus produces damage into the syncytia, this triggers the death of 
several cells at the same time. Created with BioRender.com.
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[66]. Furthermore, children with bronchiolitis produce aerosols 
that might transport the virus via extremely small droplets 
that are easily spread [67]. On the other hand, other authors 
suggest that aerosol transmission is inefficient, since investi-
gations in pediatric primary care found that just 2.3% of aer-
osol samples collected had detectable RSV [68]. As a result, 
the process of respiratory transmission necessitates, above all, 
closeness between two people. Furthermore, some authors ar-
gue that fomite contamination may be an additional pathway 
for virus transmission [69], albeit of lesser consequence than 
respiratory transmission. RSV has a basic reproductive number 
of roughly 3.0 (SD=0.6) [65]. However, as with all respirato-
ry diseases, this number varies based on the features of the 
individual source of infection (behavior, age, etc.), as well as 
the preventive measures implemented throughout the virus’s 
circulation months.

This fast transmission rate has an impact on more than 
just the process by which the virus spreads from an infected 
individual to a vulnerable one. Other elements, like as coex-
istence and interpersonal interactions, also have a role. The 
characteristics of families and persons living together in the 
family setting are highly linked to RSV transmission. Some 
authors, for example, show that infections in younger chil-
dren frequently develop when the virus enters the home via 
an older sibling’s infection [70,71]. Younger children who are 
not in school have a very restricted contact regimen, but older 
children who are already in day care/school are more likely to 
become infected, developing a milder condition but having a 
significant influence on younger children who are cohabitants 
due to their age. Children, on the other hand, can transmit 
RSV to older caregivers, which can be harmful if they have risk 
diseases [72,73]. Vaccination measures for older children may 
thus be beneficial in preventing sickness in younger children.

Features of epidemic circulation and lasting of epi-
demics. During the coldest months of the year, RSV spreads 
like wildfire. It is typically diagnosed in the northern hemi-
sphere between the months of October and March, with the 
epidemic peak recorded in several European nations around 
week 48-50 of the year, about at the end of December [68,69] 
(Figure 3). Epidemics in these countries last from 12-32 weeks, 
depending on the territory and the characteristics of the sur-
veillance system (a total of 5-6 months). RSV epidemics often 
spread from the southern hemisphere to the northern hemi-
sphere. They begin in the southern hemisphere in March and 
June and conclude in the northern hemisphere in September 
and December [74,75]. However, in tropical climatic areas, the 
RSV season might last up to ten months [76].

The seasonal prevalence of RSV in temperate regions 
may reflect one of two previously proposed ideas for influ-
enza viruses. The first theory holds that epidemics during the 
cold months of the year are caused by new virus introduc-
tions from countries with widespread virus circulation, either 
from the opposite hemisphere or from tropical or subtropical 
climates where the virus adopts a type of endemic circulation 
[78]. These reintroductions would occur on a regular basis, 

the disease and consequently the severity of the clinical pro-
cess [59]. Although syncytia development impacts other disor-
ders, such as COVID-19, the exact processes by which it wors-
ens the condition in these patients remain unknown.

Antigenic sites in the F protein and the possible im-
pact on vaccine effectiveness and protection. Six distinct 
antigenic regions in the F protein have been identified as being 
of particular significance for the production of vaccines and 
monoclonal antibodies. These antigenic sites were discovered 
both before and after fusion. Neutralizing antibodies were de-
veloped in the following sequence of potency: site Ø, site V, 
site III, site IV, site II, and site I [60]. Sites Ø and V are exclu-
sively present in the F protein’s pre-fusion conformation, but 
the others are present in both, with considerable differences in 
the effectiveness of neutralizing antibodies produced against 
them (up to 80-fold in some circumstances) [60].

Given that the Ø and V sites are the most potent inducers 
of neutralizing antibodies, and that these are only present in 
the pre-fusion state of the protein, the great majority of vac-
cine and monoclonal antibody designs will target the pre-fu-
sion form of this protein. Sixty percent of the neutralizing an-
tibodies found against the F protein target the Ø and V sites. 
The most likely explanation for these large differences is that 
the Ø and V sites on the F protein are much more topologically 
accessible than the rest, in addition to the angle of approach 
of the antibodies, which interacts with other annexin struc-
tures less than other antigenic sites on the same protein [61].

In terms of the technique to be taken to avoid infection or 
minimize its severity, the two preventative strategies available 
at present time are drastically different. Vaccines formulated 
against the F protein in its pre-fusion condition generate a 
broad polyclonal antibody response when manufactured us-
ing the complete protein. In other words, antibodies are made 
preferentially towards the most accessible antigenic sites Ø 
and V, although antibodies against other sections of the pro-
tein are also formed [62]. However, antibody treatments such 
as nirsevimab and palivizumab are directed against specif-
ic epitopes (in the case of nirsevimab Ø and II in the case of 
palivizumab) [63], implying that we are dealing with monoclo-
nal antibodies [64]. This results in significant discrepancies in 
active and passive immunization techniques, despite the fact 
that both paradigms examine different areas of protection and 
are, of course, complementary.

Several Spanish hospitals conducted the first global esti-
mate of nirsevimab’s effectiveness using real-world evidence, 
which was published in February 2024 [65]. According to this 
trial, in infants under 9 months old who were candidates for 
this vaccine, nirsevimab was found to be effective in prevent-
ing laboratory-confirmed RSV LRTI (low-respiratory tract in-
fections) by 70% to 84%, with coverages exceeding 90%.

EPIDEMIOLOGICAL FEATURES OF THE RSV

Features of the transmission of RSV. RSV is transmit-
ted by infected people’s secretions via the respiratory pathway 
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For example, in the case of influenza, one of the most 
widely accepted explanations for the annual occurrence of ep-
idemics is that reintroductions are the primary driver of this 
seasonality. Indeed, the “East-Southeast Asian epicenter mod-
el” hypothesis, proposed by Smith et al. in 2008, demonstrated 
the existence of a continuous reservoir of influenza in East and 
Southeast Asia, which could be the epicenter of strains that 
were then distributed globally in each epidemic, both in the 
northern and southern hemispheres [82]. These scientists even 
claimed that dispersions out of this part of the world had lit-
tle effect on the evolutionary divergence of influenza viruses, 
implying that this epicenter was responsible for the majority 
of the virus’s antigenic alterations. Similar patterns have been 
seen by other researchers from several tropical climatic reser-
voirs [78]. However, as previously discussed, the possibility that 
RSV could survive for a long time in non-immunocompromised 
populations should not be discounted. According to some au-
thors, the mixed hypothesis is the most correct. Indeed, due to 
nitric oxide activity, RSV may remain latent in monocyte-de-
rived dendritic cells for lengthy periods of time [83,84], which 
could be significant to the occurrence of epidemics or non-pe-
riodic seasonal outbreaks in temperate regions.

but in unfavorable times due to an unfavorable climate for 
the virus in temperate climes, brief chains of transmission 
would occur, which would not result in epidemics. On the 
contrary, once the cold months arrive and the above-men-
tioned environmental conditions (low temperatures, low ab-
solute humidity, overcrowding, etc.) favor virus persistence, 
reintroductions from other parts of the world lead to longer 
chains of transmission, eventually leading to epidemics, as 
seen with influenza [79].

Alternatively, the second hypothesis proposes that the vi-
rus will remain dormant in select populations, such as immu-
nocompromised persons such as HIV/AIDS patients and even 
children, until the following season [40]. These people are gen-
erally long-term virus excretors, even weeks or months [80,81], 
since they are unable to clear the infection or reduce the viral 
load, but they are often asymptomatic or pauci-symptomatic. 
However, until the appearance of COVID-19, current surveil-
lance systems focused their efforts on influenza and exclusive-
ly on the epidemiological surveillance period (week 40 of one 
year to week 20 of the following year), making it difficult to 
discover this sort of case.

Figure 3  Circulation of RSV and influenza viruses during the last 9 epidemic seasons before the COVID-19 
pandemic in Spain. Modified from Instituto de Salud Carlos III [77].
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parks to prevent transmission [88], effectively keeping them in a 
bubble in which only adults were responsible for the virus’s en-
try into the home environment. In 2021, an unseasonalized RSV 
outbreak occurred in France as well, beginning in February and 
lasting until about May of that year [92]. Pinquier et al. found a 
3-4 month disparity between what happens in this country and 
what happens in other countries. Other studies have found sim-
ilar shifts in various countries, primarily during the off-season 
and notably in late RSV epidemics [93].

RSV behavior in 2022 was more similar to that observed 
prior to the pandemic, with the virus emerging in several na-
tions in the fall months, albeit significantly earlier. The major-
ity of cases (91%) in the United States were caused by differ-
ent genotypes of the RSV-A subtype. This revival was severe, 
with detection and hospitalization rates higher than before 
the pandemic [94]. Other countries, such as Spain, have also 
reported a more severe RSV outbreak in 2022 compared to 
previous years, particularly among younger children [95]. The 
national reports produced by the SiVIRA tool (ARI Surveillance 
System) at the state level demonstrate this anomalous behav-
ior. They indicate a delocalized epidemic peak in comparison 
to other post COVID-19 epidemics, with the epidemic peak oc-
curring in week 1/2023, and a very high incidence, approach-
ing 300 cases/100,000 inhabitants [96]. Following that, both 
the incidence and the pattern that accompanied the epidemic 
peak in the 2023–2024 season were comparable to those of 
prior years (Figure 4).

CONCLUSIONS

RSV has a significant influence on human health, particu-

RSV has been described as having two subtypes (RSV-A and 
RSV-B) and various genotypes, as previously stated. Historical 
divergence statistics indicate that the two RSV groups may have 
separated in the year 1681 [41]. The two RSV subtypes frequent-
ly co-circulate in the same epidemic [38,85], however one sub-
type predominates over the other depending on the year [86]. 
Which subtype is more widespread is highly dependent on the 
season, the affected population, the territory, and the people’s 
immunological background. However, numerous reports claim 
that subtype A is more common than subtype B in around 60% 
of outbreaks [87,88]. Both RSV subtypes have similar pathologic 
characteristics in illness manifestation. However, there appears 
to be a larger prevalence of ICU hospitalizations in pediatric 
RSV-A patients than in RSV-B patients [89].

Impact of the COVID-19 pandemic on the RSV cir-
culation. The COVID-19 pandemic changed the way all res-
piratory viruses behaved. Mask use, social isolation, travel bans 
to other countries, and isolation all abruptly halted the spread 
of SARS-CoV-2 and other respiratory-transmitted viruses [90]. 
However, the relaxation of these measures beginning in 2021 
caused some respiratory viruses to partially resurface, albeit 
with epidemiological characteristics in terms of timing of pres-
entation that were not normal compared to before the pan-
demic (higher intensity, longer months of circulation, locali-
zation of epidemics in unusual months of the year, and so on).

In Japan, for example, the 2021 RSV outbreak began in July, 
significantly earlier than usual [91]. This was due not only to the 
relaxation of the aforementioned measures, but also to the fact 
that many countries adopted strict measures to keep children 
away from the virus, closing daycare centers, schools, and even 

Figure 4  Incidence rate (cases/100.000 inhabitants) of RSV in Spain during the last five seasons since the 
emergence of COVID-19 pandemic. Modified from SIVIRA [96].
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larly in youngsters and the elderly. The virological and genetic 
properties of this virus constitute a barrier for the develop-
ment of appropriate preventative strategies to avoid the dis-
ease from a microbiological standpoint. Among these obsta-
cles is the high variability of the G protein, which is primarily 
responsible for reinfections in the initial years of life, as well as 
an etiopathogenesis of the disease that inhibits the immune 
system’s ability to eradicate the virus. However, the character-
istics of the RSV F protein in the prefusion state have made vi-
able the appearance of different preventive treatments, which 
have already seen or will see the light of day in the coming 
years.

It is desirable to improve existing knowledge on the ep-
idemiological realities of RSV, particularly the disease’s influ-
ence on human health, not only in infants but also in older 
age groups. This may allow us to assess who will gain the 
most from the advent of this sort of preventative medicine, 
allowing us to prioritize its usage in these populations. Robust 
surveillance mechanisms, in addition to those already in place 
for influenza and COVID-19, are required to properly track the 
virus’s activities. The breakthroughs in RSV treatment and pre-
vention that are now being achieved will likely allow for pro-
gress in many aspects of its treatment and prevention during 
the coming decade.
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